• Title/Summary/Keyword: Expander-extrusion

Search Result 4, Processing Time 0.019 seconds

Effect of Processing Cotton Straw Based Complete Diet with Expander-extruder on Performance of Crossbred Calves

  • Kirubanath, K.;Narsimha Reddy, D.;Nagalakshmi, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1572-1576
    • /
    • 2003
  • A growth trial of 180 days was conducted on 18 crossbred calves (6-9 months, $73.48{\pm}6.52kg)$ by randomly allotting to two complete diets and a conventional diet (6 in each group). The complete diets were formulated containing 40 per cent cotton straw, one processed in mash form and other subjected to expander-extruder pelletization (EEP). These two complete diets were compared with conventional system of feeding under which concentrate mixture and cotton straw were fed separately in a 60:40 ratio. The calves on EEP complete diet consumed more (p<0.01) DM in comparison to other two groups. The DMI per 100 kg body weight was similar among all the diets. The ADG was significantly (p<0.01) higher in calves fed EEP complete diets (815.4 g) followed by mash (627.0 g) in comparison to conventional diet (464.9 g). The DM intake per kg metabolic body weight was higher (p<0.01) on complete diet than conventional diet. The intakes of DCP (p<0.05), TDN (p<0.01), and ME (p<0.01) per kg metabolic body weight were significantly higher on EEP complete diet in comparison to mash and conventional diet. The water intake per kg DM intake was comparable among all the diets. The efficiency of DM utilisation was higher p (<0.05) on EEP complete diet (5.84) in comparison to conventional diet (7.41), whereas on mash diet it was intermediate (6.68). The efficiency of DCP utilization was similar in mash and EEP complete diet fed groups, which was higher (p<0.05) than that of the conventional diet. Expander-extrusion though increased the cost of production it reduced the cost of feed per unit live weight gain by 12.28% in comparison to its mash form and by 16.76% when concentrate and cotton straw were fed separately. The results indicated that blending of cotton straw along with concentrates in a complete diet increased the palatability of the straw in comparison to conventional system and expander extruder processing of cotton straw based complete diet gave better growth performance and may form an economic ration for growing crossbred calves.

The affects of Development and Environment on Swine Diets Processing (돼지사료가공이 성장 및 환경에 미치는 영향)

  • 김인호;이상환
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.1
    • /
    • pp.35-47
    • /
    • 2002
  • In swine production, efficiency of utilization of nutrients is imperative. By embracing advances in processing techniques(i.e., fine grinding, pelleting, steam flaking, roasting, extrusion and expanding) nutrient utilization of feeds turfs have greatly improved. Grinding is by far the most commonly used process with reduction of particle size, Expander, like extruders, are high-temperature and pressure-short-term processor. The purpose of using an expander is to improve pellet quality. Also, expanding of dietary ingredients indicates improvements in growth performance and nutrient digestibility. Because feed cost are easily the greatest economic input into swine production, maximizing nutrient utilization is an area that will continue to receive much attention. Therefore, much attention will continue to be placed on feed processing techniques that will give consistent improvements in animal performance and nutrient digestibility.

  • PDF

Processing Effects of Feeds in Swine - Review -

  • Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.597-607
    • /
    • 1998
  • Processing is generally employed to alter the physical and chemical properties of feeds used in pig diets, using hammer/roller mills, pellet mills and extruders/expanders. The reported optimum particle sizes of corn are approximately $500{\mu}m$, $500-700{\mu}m$, $400-600{\mu}m$, for nursery, growing-finishing, and breeder pigs respectively. Optimum particle size of grains are affected by diet complexity. There was a trend towards reducing particle size in order to increase ADG in pigs fed a simple diet, though such was not the case for pigs fed a complex diet. Uniformity of particle size also affects the nutritional values of swine feeds. Uniform particle sizes would consistently give greater nutrient digestibilities. In terms of pellet quality, it is reported that a higher incidence of fmes in pelleted feeds has a direct correlation with poorer feed conversion ratio in pigs. Particle and pellet sizes are also very important for pelleting in terms of grinding, digestibility, stomach ulceration and pellet durability. A particle size of $600{\mu}m$, or slightly less, seemed optimal for com in fmishing pigs, and the 5/32 in. diameter pellets supported the best efficiencies of gain during nursery and finishing phases. Extruder and/or expander processes would allow the feed industry an increased flexibility to utilize a wider spectrum of feed ingredients, and improve pellet quality of finished feeds. It would appear that extruded or expanded diets containing highly digestible ingredients have little effect on the growth performance of pigs, and the feeding values of the feeds over pelleted diets were not improved as pigs grew. The extruder or expander is much more effective than a pelletizer in salmonella control. Gastric ulcerations and/or keratinizations were consistently reported in pigs fed mash and processed diets containing finely ground grains, whereas carcass quality was not affected by diet processing methods such as pelleting, extruding or expanding. In corn- or sorghum-based diets, the electrical energy consumption is 4-5 times higher in the expanding than in the pelleting process. But the expander's processing cost was half of that shown by an extruder. Finally, the decision of which feed processing technology to adopt would depend on the processing cost, and any potential improvement in growth performance and digestibilities of nutrients should offset the increased operating and capital costs related to the extruder/expander technology over mash or pelleting processes in pigs.

Effects of Feed Processing Methods on Growth Performance and Ileal Digestibility of Amino Acids in Young Pigs

  • Ohh, S.H.;Han, K.N.;Chae, B.J.;Han, In K.;Acda, S.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1765-1772
    • /
    • 2002
  • Three experiments were conducted to determine the feed processing method best suited for early and conventionallyweaned pigs, and to investigate the effects of different extrusion temperatures on ileal digestibility of amino acids in diets containing different protein sources. In exp.1, a total of 108 pigs (Landrace${\times}$Yorkshire${\times}$Duroc; 24 d of age and 7.60 kg average body weight) were alloted on the basis of sex, weight and ancestry to three treatments in a randomized complete block design. Feed processing methods used were mash (M), simple pellet (SP), and expanded pellet (EP). In exp. 2, a total of 96 pigs (Landrace${\times}$Yorkshire${\times}$Duroc; 14 d of age) were allotted on the basis of sex, weight, and ancestry to three treatments in a randomized complete block design. Diets were mash (M), expanded pellet (EP), and expanded pellet crumble (EPC). In exp. 3, a study was designed to investigate the effect of different extrusion temperatures (100, 120, and $140^{\circ}C$) over the control (untreated) on the ileal digestibility of amino acids in diets containing protein sources such as spray-dried plasma protein (SDPP), whey protein concentrate (WPC), and fish meal (FM). Results in exp.1 showed that ADG, ADFI and the F/G ratio of pigs fed the SP diet were improved (p<0.05) compared with those fed the M or the EP diets, but the digestibility of nutrients was not different (p>0.05) among the treatments. In exp. 2, pigs fed expanded pellet treatments (EP or EPC) had a significantly improved (p<0.05) F/G ratio compared to the pigs fed the M diet which was primarily attributed to the significant reduction (p<0.05) in ADFI, but the overall growth rate of pigs fed expanded pellet diets was not improved. In exp. 3, there was a significant interaction effect (p<0.05) between the extrusion temperature and protein source on the ileal digestibility of amino acids. With an extrusion temperature of $100^{\circ}C$, the ileal digestibility of Lys, Val, Gly and Ser was significantly lower in the diet containing WPC compared to the diet containing SDPP. Increasing the temperature to $120^{\circ}C$ led to significant differences (p<0.05) in the digestibility of Thr and Tyr between diets containing WPC and SDPP. Regardless of extrusion temperatures, the weaned pigs' diet containing either SDPP or FM had significantly higher Lys, Phe, Thr, Val, and Gly digestibility relative to the WPC diet. Results of the present study suggest that simple pelleting of diets containing protein sources such as whey protein concentrate, spray-dried plasma protein and fish meal would be better than the extruded or expanded pellet diets. Extruder or expander processing of weaned pigs' feed could reduce palatability and ileal digestibility of several amino acids and therefore may be responsible for a negative growth response in weaned pigs.