• Title/Summary/Keyword: Expander efficiency

Search Result 69, Processing Time 0.031 seconds

Conceptual design of cryogenic turbo expander for 10 kW class reverse Brayton refrigerator

  • Lee, Chang Hyeong;Kim, Dong Min;Yang, Hyung Suk;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.41-46
    • /
    • 2015
  • Recently, the development of the HTS power cable is actively promoted. As the length of HTS power cable increases, there have been many efforts to develop large capacity cryocooler. Among the various cryocooler, the Brayton refrigerator is the most competitive for HTS power cable. The Brayton refrigerator is composed of recuperative heat exchangers, a compressor, and a cryogenic turbo expander. In these components, the cryogenic turbo expander is a part to decrease the temperature and it is the most significant component that is closely related with overall system efficiency. It rotates with high speed using a high-pressure helium or neon gas at cryogenic temperature. This paper describes the design of a 10 kW class Brayton refrigeration cycle and the cryogenic turbo expander. Flow and structural analysis are performed for the rotating impeller and nozzle to verify the efficiency and the design performance.

Design of Scroll Expander for Electric Power Generation System using Organic Rankine Cycle with Biomass Energy Source (바이오매스를 에너지원으로 하는 유기냉매 사이클 스크롤 팽창기 발전 장치 설계)

  • Moon, J.H.;Yu, J.S.;Kim, H.J.;Cho, N.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.30-36
    • /
    • 2012
  • A scroll expander has been designed to produce a shaft power from a R134a Rankine cycle for electricity generation. Heat was supplied to the Rankine cycle through a heat exchanger, which received heat from another cycle of water. In the water cycle, water was heated up in a boiler using biogenic solid fuel. The designed scroll expander was a horizontal type, and a trochoidal oil pump was employed for oil supply to bearings and Oldham-ring keys. For axial compliance, a back pressure chamber was created on the backside of the orbiting scroll base plate. Numerical study has been carried out to estimate the performance of the designed scroll expander. The expander was estimated to produce the shaft power of about 2.9 kW from a heat supply of 36 kW, when the temperature of R134a was $80^{\circ}C$ and $35^{\circ}C$ at the evaporator and condenser of the Rankine cycle, respectively. The expander efficiency was about 70.5%. When the amount of heat supply varied in the ranges of 7.5~55 kW, the expander efficiency changed in the range of 45.6~70.5%, showing a peak efficiency of 70.5% at the design shaft speed.

Experimental Study on the Operating Characteristics of the Organic Rankine Cycle (ORC 시스템의 운전 특성에 관한 실험연구)

  • Eom, Hong Sun;Yoon, Cheon Seog;Kim, Young Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.208-215
    • /
    • 2013
  • An experimental study of an ORC (Organic Rankine Cycle) system has been performed for small-scale applications in the range of a few kW for low-grade-recovery heat sources. The ORC system was equipped with a scroll expander. Experimental tests were carried out using this system, and showed good performance and reliability for the small-scale system. The effects of various operating conditions were selected as the main parameters for the performance of ORC system, such as the expander speeds and mass flow rates of R-134a for expander inlet temperatures ranging from $100^{\circ}C$ to $190^{\circ}C$, as well as the thermal power, thermal efficiency, expansion efficiency, and volumetric efficiency.

Optimization of Design Pressure Ratio of Positive Displacement Expander for Engine Waste Heat Recovery of Vehicle (자동차 엔진 폐열 회수 동력시스템에서 용적형 팽창기의 설계 팽창비 최적화)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • The effect of built-in volume ratio of expander on the performance of a two-loop Rankine cycle system for engine waste heat recovery of vehicle has been investigated. In the case of positive displacement expander in the various operating condition of the vehicle, it can operate in both under-expansion and over-expansion conditions. Therefore, the analysis of off-design performance for the expander is very important. Furthermore, the volume and weight of the expander as well as the efficiency must be considered in the optimization of the expander. This study shows that the built-in volume ratio of expander causing under-expansion at a target condition is more desirable considering the off-design performance and size of the expander, based on the simple modeling of off-design operation of the expander.

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Applicability of Scroll Expander-compressor for Stirling Engine (스털링 엔진에 대한 스크롤 팽창기 : 압축기의 적용성)

  • Kim, Seong-Jun;Kim, Hyun-Jin;Kim, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2009
  • Conceptual design of scroll expander and scroll compressor for 10kW-class Stirling engine utilizing solar energy as heat source has been carried out to estimate the applicability of scroll mechanism for Stirling cycle. CO2 was chosen as working fluid, since it has lower expansion index and higher density among probably usable gases. Gas temperature at the expander inlet was set at $700^{\circ}C$, and that at the compressor inlet was at $40^{\circ}C$. System efficiency reached maximum at the pressure ratio of about 2.5, and the peak efficiency increased with increasing high side pressure. Due to safety concern, the pressure condition of 6 MPa/2.5 MPa was chosen as design condition. Orbiting scroll members for the expander and compressor were designed to have double-sided structure in order to reduce the overall scroll size and to cancel out the axial gas forces acting on the orbiting scroll base plate. By parametric study on the scroll profile, smaller possible size for the scroll members was obtained. With the shaft speed of 3600rpm, the shaft output of the designed scroll expander was calculated to be 45.4kW, while input power for the scroll compressor was 34.5kW, yielding 10.9kW for the output power of the Stirling engine. System efficiency was estimated to be about 7.3%, and overall efficiencies of the scroll expander and compressor were around 84.1% and 88.3%, respectively.

Proposal and Analysis of DMR Process with Hydrofluorocarbon Refrigerants (Hydrofluorocarbon 냉매를 적용한 DMR 공정 제안 및 분석)

  • Park, Jinwoo;Lee, Inkyu;Shin, Jihyun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Natural gas, one of the cleanest fossil fuel, is liquefied to reduce its volume for the long distance transportation. Small size floating liquefied natural gas plant has small area that safe issue is highly considered. However, Dual Mixed Refrigerants (DMR) process has fire potential by using flammable refrigerants and N2 Expander process has low compressed energy efficiency which has high inherent process safety. Therefore, safe process with high compressed energy efficiency is constantly needed. This study suggested an alternative refrigerants to existing DMR process by using Hydrofluorocarbon which has high safety due to its non-flammable properties. As a result, it showed 34.8% lower compressed energy efficiency than DMR process that contains fire potential whereas 42.6% improved compressed energy efficiency than Single N2 Expander process. In conclusion, this research proposed safe process for small size floating liquefied natural gas plant while having high efficiency.

Design of a Swash Plate Type of Steam Expander for Waste Heat Recovery (폐열 회수용 사판식 스팀 팽창기 설계)

  • Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.313-320
    • /
    • 2011
  • For a steam Rankine cycle to recover waste heat from the exhaust gas of an Internal combustion engine, a swash plate type of expander as a power conversion unit has been designed. Numerical simulation has been carried out to estimate the performance of the designed expander. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 2.67 kW from the exhaust gas waste heat of 25.2 kW. The expander output increased almost linearly with the amount of exhaust gas waste heat in the range of from 5~40 kW, and the expander and Rankine cycle efficiencies showed gradual decreases in the ranges of 72.2%~69.5% and 10.8%~10.4%, respectively.

Experimental Study of Vane Expander Prototype Applied to Micro Organic Rankine Cycle (초소형 유기랭킨사이클 적용 프로토 타입 베인 팽창기에 관한 실험적 연구)

  • Shin, Dong Gil;Kim, Young Min
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2014
  • In this study, performances of the vane expander protype for micro organic Rankine cycle with refrigerant R134a as a working fluid have been analyzed. While operating organic Rankine cycle for analysing expander efficiencies such as overall efficiencies, volumetric efficiencies and mechanical efficiencies under $110^{\circ}C$ of expander inlet temperature, the power of the expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured while varying the rotational speed of the expander. It was found that the more the expander revolution speed is high, the more the expander power, overall efficiencies and volumetric efficiencies are higher. In case of 500 rpm of rotational speed, overall efficiencies are 6~7% and in case of 1000 rpm, overall efficiencies are 11~12%. We have found that low volumetric efficiencies result in poor overall efficiencies.

A Study on the Design of an Asymmetric Algebraic Scroll Expander (비대칭 대수나선 스크롤 팽창기 설계에 관한 연구)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Lee, Young-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.122-129
    • /
    • 2014
  • In order to extract shaft power from thermal energy in a R134a Rankine cycle as waste heat recovery system of a passenger car, a scroll expander has been designed. Algebraic spiral is adopted as the base curve for scroll wrap profile in the compact scroll design. About 19% reduction in scroll diameter is accomplished when compared to the conventional involute scroll. Performance analysis on the designed scroll expander shows that the expander efficiency is 85.5% at the vehicle speed of 120 km/hr and it decreases to 67.2% at 60 km/hr, provided that the scroll clearance is kept at 10 ${\mu}m$. The expander can produce shaft power equivalent to about 13~14% of the driving power within the speed range of 60~120 km/hr.