• Title/Summary/Keyword: Expander efficiency

Search Result 69, Processing Time 0.021 seconds

Analysis of Efficiencies of Scroll Expander for Micro Scale Organic Rankine cycle (초소형 유기랭킨사이클용 스크롤팽창기 효율 특성 분석)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.398-401
    • /
    • 2012
  • In this Study, efficiencies of the scroll expander under development for organic Rankine cycle using engine waste heat of vehicle have been analyzed and compared with the commercial scroll expander. While operating organic Rankine cycle for analysing expander efficiencies, power of expander, inlet temperature of expander, inlet pressure of expander and the flow rate of the working fluid(refrigerant R134a) have been measured. Overall efficiency of the expander has been shown the very low level compared with the overall efficiency of the commercial expander. Especially, because the low volumetric efficiency has much effect on overall efficiency, the working fluid leakage trouble of expander has to be solved surely for improvement of the expander overall efficiency.

Scroll Expander with Heating Structure and Their Systems for Distributed Power Source (가열구조를 갖는 스크롤 팽창기와 이를 이용한 분산발전 시스템)

  • Kim, Young Min;Shin, Dong Kil;Lee, Jang Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.225-231
    • /
    • 2004
  • Scroll compressor has been used extensively for refrigeration since the early 1980's for its improved efficiency, greater reliability, smoother operation, lower noise and vibration. And also, nowadays, the scroll mechanism is used for expander even though in niche market yet. But scroll expander has not been used for high-temperature and high-pressure gas, because the continuous expansion of the gas causes a wide range of temperature distribution over the whole scroll wrap that leads to differential thermal expansion of scroll elements, which results in system vibrations, noise and efficiency losses. For the scroll expander to produce power more efficiently, all of radial and radial clearances between scroll wrap must be the same. In order to reduce differential thermal expansion in addition to improvements in thermal efficiency and specific power, we propose a scroll expander with heating structure. Heat-pipe heating structure is considered as the most effective method to heat the scroll expander at a uniform temperature. This paper includes some results of preliminary study of the scroll expander with heating structure and proposals of their systems for power generation and refrigeration.

  • PDF

Effects of Channel Amplitude Ratio on Flow and Heat Transfer Characteristics of Primary Surface Heat Exchanger for ORC (유기 랭킨 사이클용 스크롤 팽창기 성능 시험에 관한 연구)

  • Moon, Je-Hyeon;Park, Keun-Tae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.151-157
    • /
    • 2014
  • An algebraic scroll expander has been fabricated and tested in a R134a Rankine cycle with heat source of 20 kW. For the operating conditions of 20~26 bar and $90{\sim}93^{\circ}C$ at the expander inlet and 8~9 bar at the outlet, the expander produced the shaft output power of about 0.6~0.7 kW in the operating speed range of 1500~2000 rpm. These correspond to the expander efficiency of 40~45%. The volumetric efficiency increased with increasing of the expander speed, reaching to 80% at 2000 rpm. Comparing to numerical simulation results, mechanical efficiency from the test data was found to be considerably low by as much as 30%, indicating that reduction in the frictional loss should be made to improve the scroll expander efficiency.

Experimental Study on Performance Characteristics of Air Driven Scroll Expander (공기구동 스크롤 팽창기 성능특성에 관한 실험적 연구)

  • Song, Wonbin;Kwak, Chul Woo;Kim, Tae Kyun;Kim, Ju Young;Kim, Kwang Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.50-54
    • /
    • 2016
  • The performance of a scroll expander is the most important factor for the efficiency of small scale Organic Rankine cycle waste heat power generation systems. In this research, a scroll compressor was purchased and operated in reverse to function as a scroll expander. With air as a working fluid, a series of performance test were conducted on this expander by varying the inlet and outlet pressure. Secondly, We have tested through 2000 to 3500 rpm rotational speed to find the maximum power and efficiency of the expander. And last, It was observed in the initial experiments that the design of the expander's orbiting scroll wrap partially blocked the fluid intake which may have caused unnecessary flow resistance. To verify this theory, a small part of the scroll wrap was removed and the performance test was redone. It was observed that the lower back pressure assure the higher efficiency and power of expander and the rotational speed that shows maximum adiabetic efficiency of scroll expander is 69% at 2500 rpm. And by modified wrap of the scroll, we could get volume flow rate for 13% to 19% and power for 5% to 18% increased. But the maximum efficiency of the modified scroll was decreased 8%.

Conceptual design of an expander for waste heat recovery of an automobile exhaust gas (자동차 배기가스 폐열 회수용 팽창기 개념설계)

  • Kim, Hyun-Jae;Kim, You-Chan;Kim, Hyun-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.237-242
    • /
    • 2009
  • A steam Rankine cycle was considered to recover waste heat from the exhaust gas of an automobile. Conceptual design of a swash plate type expander was practiced to convert steam heat to shaft power. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 1.93 kW from the exhaust gas waste heat of 20 kW. The expander output increased linearly accordingly to the amount of exhaust gas waste heat in the range of from 10-40 kW, and the Rankine cycle efficiency was more or less constant at about 9.6% regardless of the waste heat amount.

  • PDF

Investigation on Efficiency Improvement of the Nitrogen Expander Cycle : Natural Gas Liquefaction Process for LNG-FPSO (LNG-FPSO(Liquefied Natural Gas-Floating Production Storage and Offloading)용 질소 팽창 사이클의 효율 개선에 대한 연구)

  • Baek, Seung-Whan;Jeong, Sang-Kwon;Kim, Sun-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.442-447
    • /
    • 2010
  • FPSO (Floating Production Strorage and Offloading) method for LNG industry is efficient and facile compared to onshore NG (Natural Gas) treatment facility. Five simple natural gas liquefaction cycles for FPSO are presented and simulated in this paper. SMR (Single Mixed Refrigerant) cycle, SNE (Single Nitrogen Expander) cycle, DNE (Double Nitrogen Expander) cycle, PNE (Precooled Nitrogen Expander) cycle, and PDNE (Precooled Double Nitrogen Expander) cycle are compared. Simple analysis results in this paper show that precooling process and adding an expander in the liquefaction cycle is an effective way to increase liquefaction efficiency.

Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander (팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Ryu, Chang-Gi;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

Analysis of Performance of Organic Rankine Cycle for Inlet Condition of Displacement Type Expander (용적형 팽창기 입구 조건 변화에 따른 유기랭킨사이클 성능 분석)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • An expander of an organic Rankine cycle is an essential component that significantly influences its entire performance and cycle efficiency. The inlet pressure and temperature of the expander used for the organic Rankine cycle are limited by the expander's mechanical properties and the characteristics of the working fluid. The organic Rankine cycle's output, heat absorption, and efficiency are altered by the inlet pressure and temperature of the expander. In this study, a theoretical comparative analysis was conducted on an organic Rankine cycle's performance changes, which are dependent on the inlet condition of the expander. The working fluid is an R134a refrigerant, and the expander is a positive-displacement type.

Design and performance analysis of a gerotor expander for power generation from waste heat (폐열회수 발전을 위한 지로터 팽창기 설계 및 성능해석)

  • Park, Keun-Tae;Kim, Yong-Hee;Kim, Hyun-Jin
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.17-25
    • /
    • 2016
  • In this paper, the feasibility study on a gerotor type expander as a power converting device in a small scale power generation ORC system was made by performance analysis of the gerotor expander. Design of a 1kW-class gerotor expander was carried out and its performance was numerically simulated. For a R134a Rankine system with about 20 kW solar heat source, the gerotor expander efficiency was calculated to be 35~75% for the operating conditions of $Te=80{\sim}100^{\circ}C$ and $Tc=30{\sim}60^{\circ}C$. Maximum expander efficiency was obtained at an expansion ratio somewhat higher than the design expansion ratio due to pre-expansion during suction process inside the outer and inner rotor mate. If the operating expansion ratio is not far from the design expansion ratio, the gerotor expander performance can be well compared to that of a scroll type.

Performance Analysis of Vane Rotary Expander for $CO_2$ Cycles ($CO_2$ 사이클용 로타리 베인 팽창기 성능해석)

  • Kim, Ho-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Relatively low cycle performance of a conventional $CO_2$ system is partly due to significant increase in friction loss in the expansion process, since the pressure drop across the expansion device is considerably large compared to a conventional refrigeration cycle. To recover friction loss and increase refrigeration effect by providing isentropic expansion, a rotary vane type expander has been designed. Performance of the designed expander has been investigated by numerical simulation. With the pressure condition of 9 MPa/4.5 MPa and inlet temperature of $35^{\circ}C$, volumetric, isentropic, and mechanical efficiencies of the expander are calculated to be 58.1%, 101.1%, and 78.8%, respectively, resulting in total expander efficiency of 46.3%. With this expander, COP of a $CO_2$ refrigeration cycle is estimated to be improved by about 14%.