• 제목/요약/키워드: Expanded glass

Search Result 71, Processing Time 0.027 seconds

자동차 폐유리 분말을 이용한 팽창유리 소화약제의 제조 (Manufacturing of Extinguishing Powder of Expanded Glass from Recycling Automotive Glass Powder)

  • 전덕우;박정호;이용권
    • 한국건설순환자원학회논문집
    • /
    • 제10권4호
    • /
    • pp.547-552
    • /
    • 2022
  • 본 연구에서 폐차 처리되는 자동차 유리 중 일반 강화유리 즉 윈도우 유리를 사용하여 균일한 품질의 팽창유리 제조 기술을 확보하고, 제조된 팽창유리가 리튬배터리 화재 진압용으로서 활용이 가능한지 검증하였다. 폐유리를 활용하여 팽창유리룰 제조하는 공정은 크게 폐유리 파쇄(Crushing) → 분쇄 (Milling)→ 구상화(Granulation) → 발포(Expansion) → 냉각(Cooling)으로 구분하며, 최종으로 팽창유리의 입자크기 1~4 ø mm가 80 % 이상의 수율이 나오는 최적 조건을 얻기 위해 실험을 수차례 수행하였다. 폐유리와 발포제의 배합량과 공정 조건에 따라 기공의 형태, 겉보기 비중, 표면적, 흡수율, 흡착율, 기공율 및 안전성 등을 분석하였다. 기공의 형태는 SEM 표면 분석을 통해 이루어 졌으며, 겉보기 비중, 흡수율, 흡착율 및 기공율은 표준 시험법에 따라 하였고 안전성은 8대 중금속 분석과 X-ray 회절 분석을 통해 결정화가 있는지 여부를 확인하였다. 표면분석과 물성치를 비교하여 배터리용 소화약제로서 더 적합한 sample을 선정하여, 고부가가치의 활용이 가능한 리튬 배터리 화재의 적응성 시험결과 만족한 것으로 확인되었다.

Applicability Assessment of the Expanded Waste Glass Material as Planting Basis Using Ground-Based Remote Sensing

  • Hamamoto, R.;Gotoh, K.;Ikio, D.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.546-548
    • /
    • 2003
  • The expanded waste glass material is one of the recycling materials. We investigated whether the expanded waste glass material is useful as planting basis and effective as heat insulation. We examined the difference of the materials by using vegetation index and temperature. The combination of the improved soils and the improved glasses marked higher vegetation index than other mixture materials. Moreover, this combination material is excellent than other ones to heat insulation. Therefore, it suggests that the expanded waste glass material has high potential to be used as a material for planting basis.

  • PDF

Athermal and Achromatic Design for a Night Vision Camera Using Tolerable Housing Boundary on an Expanded Athermal Glass Map

  • Ahn, Byoung-In;Kim, Yeong-Sik;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.125-131
    • /
    • 2017
  • We propose a new graphical method for selecting a pair of optical and housing materials to simultaneously athermalize and achromatize an LWIR optical system. To have a much better opportunity to select the IR glasses and housing materials, an athermal glass map is expanded by introducing the DOE with negative chromatic power. Additionally, from the depth of focus in an LWIR optical system, the tolerable housing boundary is provided to realize an athermal and achromatic system even for not readily available housing material. Thus, we can effectively determine a pair of optical and housing materials by reducing the thermal shift to be less than the depth of focus. By applying this method to design a night vision camera lens, the chromatic and thermal defocuses are reduced to less than the depth of focus, over the specified waveband and temperature ranges.

Graphical Selection of Optical Materials Using an Expanded Athermal Glass Map and Considering the Housing Material for an Athermal and Achromatic Design

  • Lim, Tae-Yeon;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.531-536
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glass and housing materials to simultaneously achromatize and athermalize a multilens system composed of many elements. To take into account the lens spacing and housing, we quantify the lens power, chromatic power, and thermal power by weighting the ratio of the paraxial ray height at each lens to them. In addition, we introduce the equivalent single lens and the expanded athermal glass map including a housing material. Even though a lens system is composed of many elements, we can simply identify a pair of glass and housing materials that satisfies the athermal and achromatic conditions. Applying this method to design a black box camera lens equipped with a 1/4-inch image sensor having a pixel width of $2{\mu}m$, the chromatic and thermal defocusings are reduced to less than the depth of focus, over the specified ranges in temperature and frequency.

팽창진주암 무기복합재에서의 단열성능 및 열크랙 방지에 관한 연구 (A Study on Thermal Insulation Property and Thermal Crack Protection for Expanded Perlite Inorganic Composites)

  • 안원술
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3286-3291
    • /
    • 2014
  • $400^{\circ}C$의 고온에서 사용할 수 있는 무기단열재를 개발하기 위한 기초 연구로서 물유리(waterglass)를 바인더로 사용하여 제조한 팽창진주암(expanded perlite) 무기복합재의 단열성과 열 충격에 의한 크랙 방지에 관한 연구를 진행하였다. 정량된 팽창진주암 미세분말과 물유리를 혼합한 반죽을 몰드에 넣고 하루 동안 안정화시킨 후에 $150^{\circ}C$ 오븐에서 완전히 건조하여 샘플을 제작하였다. 인산알미늄(aluminum phosphate)와 마이카(mica)분말이 각각 반응촉진제와 열 충격 방지제로 사용되었다. 특히 마이카 분말이 도입된 샘플은 $500^{\circ}C$ 고온에서도 열에 의한 크랙 발생이 일어나지 않았으며, 샘플의 단열성은 팽창진주암의 혼합비율이 높아질수록 향상됨을 보여주었으며, 중량비로 물유리/perlite/mica/Al phosphate=100/200/10/1.5의 조성비를 같는 샘플은 $500^{\circ}C$에서 약 0.09W/mK의 열전도도를 나타내는 우수한 단열 특성을 나타내었다. 그러나 나트륨 실리케이트(sodium silicate)가 주성분인 물유리 바인더의 열적 특성으로 인하여 $600^{\circ}C$이상의 온도에서는 심한 치수변형을 발생시켜 실제 사용상의 온도 제한성을 보여 주었다.

[Retracted]Structural performance of RC beams with openings reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.475-493
    • /
    • 2022
  • The results of research focusing on the experimental and numerical performance of ferrocement RC beams with openings reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh, and polyethylene mesh independently are presented in this article. Casting and testing of fourteen reinforced concrete beams with dimensions of 200×100×2000 mm under concentric compression loadings were part of the research program. The type of reinforcing materials, the volume fraction of reinforcement, the number of mesh layers, and the number of stirrups are the major parameters that change. The main goal is to understand the impact of using new appealing materials in reinforcing RC beams with openings. Using ANSYS-16.0 Software, nonlinear finite element analysis (NLFEA) was used to demonstrate the behavior of composite RC beams with openings. A parametric study is also conducted to discuss the variables that can have the greatest impact on the mechanical behavior of the proposed model, such as the number of openings. The obtained experimental and numerical results demonstrated the FE simulations' acceptable accuracy in estimating experimental values. Furthermore, demonstrating that the strength gained of specimens reinforced with fiber glass meshes was reduced by approximately 38% when compared to specimens reinforced with expanded or welded steel meshes is significant. In addition, when compared to welded steel meshes, using expanded steel meshes in reinforcing RC beams with openings results in a 16 percent increase in strength. In general, when ferrocement beams with openings are tested under concentric loadings, they show higher-level ultimate loads and energy-absorbing capacity than traditional RC beams.

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.