• Title/Summary/Keyword: Exothermic

Search Result 515, Processing Time 0.024 seconds

Morphological change of Pt/MoO3/SiO2 for the Synthesis of i-Butylene from n-Butene (N-Butene으로부터 i-Butylene 합성을 위한 Pt/MoO3/SiO2 촉매의 표면 구조 변화)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.861-868
    • /
    • 1996
  • Skeletal isomerization reaction known as exothermic reaction shows possible maximum yield of i-butene from n-butene at $110^{\circ}C$ over $Pt/MoO_3/SiO_2$. Compared with conventional catalyst such as silica, zeolite, alumina etc., $Pt/MoO_3/SiO_2$ demonstrates higher yield while by-products except 2-butene do not form. Faster H spillover rate over $Pt/MoO_3/SiO_2$ is demonstrated via isothermal reduction experiment at $110^{\circ}C$ compared to the rate over $Pt/MoO_3/Al_2O_3$. Overall isomerization rates are proportional to higher spillover rates from Pt onto $MoO_3$ surface. The skeletal isomerization reaction is composed of two elementary steps. First, carbonium ion formation over Pt crystallites by H spillover. Second, carbenium ion formation over $MoO_3$ followed by formation of i-butene. Moreover, it is suggested that H spillover step from Pt surface onto $MoO_3$ is assumed to be the rate determining step and control the overall isomerization rate.

  • PDF

A Study on Electrolysis of Heavy Water and Interaction of Hydrogen with Lattice Defects in Palladium Electrodes (팔라디움전극에서 중수소의 전기분해와 수소와 격자결함의 반응에 관한 연구)

  • Ko, Won-Il;Yoon, Young-Ku;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 1992
  • Excess tritium analysis was peformed to verify whether or not cold fusion occurs during electrolysis of heavy water in the current density range of 83~600 mA/$\textrm{cm}^2$ for a period of 24 ~ 48 hours with use of palladium electrodes of seven different processing treatments and geometries. The extent of recombination of D$_2$ and $O_2$gases in the electrolytic cell was measured for the calculation of accurate enthaplpy values. The behavior and interaction of hydrogen atoms with defects in Pd electrodes were examined using the Sieverts gas charging and the positron annihilation(PA) method. Slight enrichment of tritium observed was attributed to electrolytic enrichment but not to the formation of a by-product of cold fusion. The extent of recombination of D$_2$and $O_2$gases was 32%. Hence the excess heat measured during the electrolysis was considered to be due to the exothermic reaction of recombination but not to nuclear fusion. Lifetime results from the PA measurements on the Pd electrodes indicated that hydrogen atoms could be trapped at dislocations and vacancies in the electrodes and that dislocations were slightly more preferred sites than vacancies. It was also inferred from R parameters that the formation of hydrides was accompanied by generation of mostly dislocations. Doppler broadening results of the Pd electrodes indicated that lattiec defect sites where positrons were trapped first increased and then decreased, and this cycle was repeated as electrolysis continued. It can be inferred from PA measurements on the cold-rolled Pd and the isochronally annealed Pd hydride specimens that microvoid-type defects existed in the hydrogen-charged electrode specimen.

  • PDF

Adsorption Behaviors of Nickel ton on the Waste Pulp Produced in the Paper Recycling Process (고지(古紙) 재생(再生) 과정(過程)에서 발생(發生)하는 폐(廢)펄프를 흡착제(吸着劑)로 이용(利用)한 니켈 폐수(廢水) 처리(處理) 특성(特性))

  • Baek, Mi-Hwa;Shin, Hyun-Young;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.58-65
    • /
    • 2006
  • The applicability of the waste pulp which produced in the paper recycling process as an adsorbent for the treatment of $Ni^{2+}$ ion in wastewater has been investigated taking the initial concentration of adsorbate, temperature, the amount of adsorbent, and solution pH as the experimental variables. In addition, the effect of the concentration of coexisting solute and pre-treatment of adsorbent on the adsorbability of $Ni^{2+}$ ion were also examined. The electrokinetic potential of waste pulp was observed to be positive below pH 7.8 and negative above this pH. The adsorption reaction of $Ni^{2+}$ ion reached its equilibrium within 4 hours after the reaction was initiated and the adsorbed amount of adsorbate was found to increase with its initial concentration. The adsorbability of $Ni^{2+}$ was raised with temperature so that its adsorption reaction was considered to be exothermic, which was substantiated by thermodynamic calculation. Also, the adsorbed amount of $Ni^{2+}$ was raised with the amount of waste pulp and with pH in the range of pH $3{\sim}6$. This behavior of the adsorption of $Ni^{2+}$ according to the solution pH was well agreed with the electrokinetic characteristics of waste pulp in solution. The amount of coexisting solute was observed to reversely affect on the $Ni^{2+}$ adsorption onto waste pulp under the experimental conditions. With regard to the pre-treatment of adsorbent with NaOH, the adsorbability of $Ni^{2+}$ was increased with the concentration of NaOH to a certain extent. However, it was found to decrease contrarily when the concentration of NaOH became too high.

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Slow Cook-Off Test and Evaluation for HTPE Insensitive Propellants (HTPE 둔감추진제 완속가열 시험평가)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Kim, Jun-Hyung;Lee, Do-Hyung;Min, Byung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • This study was carried out to investigate the thermal decomposition and execute EIDS slow cook-off test for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid phase change(II$\rightarrow$I) of AN was followed by the exothermic process of BuNENA/AN mixture up to $200^{\circ}C$. In EIDS slow cook-off tests, HTPE 001 and HTPE 002 reacted at around $250^{\circ}C$ and $152^{\circ}C$ respectively, and both of them showed sudden temperature increase curves at $115^{\circ}C$. The critical temperatures, $T_c$, of thermal explosion for the propellants HTPE 001 and HTPE 002, were obtained from both the non-isothermal curves at various heating rates and Semenov's thermal explosion theory. Kissinger's method that was used to calculate $T_c$ was also employed to obtain the activation energies for thermal decompositions.

Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석)

  • Lee, Yongkyu;Jung, Ikhwan;Na, Jonggeol;Park, Seongho;Kshetrimayum, Krishnadash S.;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.818-823
    • /
    • 2015
  • In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of $H_2$ and CO($H_2/CO$ molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = $10000h^{-1}$, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.

Characteristics of Phosphate Rock and Increasing of Citrate Solubility by Temperature and Acidulation (인광석분말(燐鑛石粉末)의 특성(特性)과 온도(溫度) 및 산처리(酸處理)에 의한 구용율(枸溶率) 증대(增大))

  • Lim, Dong-Kyu;Jung, Yee-Geun;Shin, Jae-Sung;Kim, Heung-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 1994
  • This study was conducted to characterize the chemical and mineralogical properties of representative phosphate rocks from North Carolina and Florida, and to find out the method for increasing the citric acid (two percent) solublility of phosphate rock. The the results are summerized as follows : 1. Major composition of phosphate rock was carbonate apatite containing small amounts of calcite and quartz. The differential thermal analysis(DTA) did not show endothermic or exothermic peak till $1,000^{\circ}C$. 2. Two percent citric acid solublility of phosphate rock was increased with the finess of particle size, but the water solublility was not affected by the particle size. Long time calcinated under high temperature had negative effect, while the incubation with 2% citric acid under low temperature had positive effect on solubility. 3. To increase the solubility of phosphate rock it was mixed with farmyard and barnyard manure and acidulated. Citrate solubility by treatment with sulfuric acid was more effective than nitric acid. Acidulation with thirty percent sulfuric acid increased both citric acid solubility and water solublility. Treatment with glutamic acid had little effect on the solubility of phosphate rock.

  • PDF

Evaluation of the Deicing Performance and Concrete Structure Effect with Various Deicing Chemicals (제설제 종류에 따른 융빙성능 및 콘크리트에 미치는 영향 평가에 관한 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung;Lee, Joo-Kwang;Chung, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.113-123
    • /
    • 2005
  • In this study, calcium chloride$(CaCl_2)$, sodium chloride (NaCl), organic acids-containing deicer(NS 40, NS 100), mixed deicier$(NaCl\;70%+CaCl_2\;30%,\;NS\;40\;70%+CaCl_2\;30%,\;NaCl\;70%+NS\;40\;30%,\;NS\;40\;70%+NaCl\;30%)$ is investigated based on the laboratory test for deicing performance, freez-thaw resistance of concrete, and corrosion rate of metal. Test items for deicing performance were ice melting and ice penetration, freezing point depressions and eutectic point, pH, thermal properties for selected deicing chemicals as well as their compatibility with concrete and metal were experimentally investigated. As a test results, in case of the use chloride-containing deicier in area that concrete structures has subjected to freez-thaw reaction in winter season, it showed that mixed deicing chemicals with optimum ratio has desirable method than use one deicing chemicals when is consider to deicing performance and effects, corrosion of steel materials, and freez-thaw resistance of concrete. When use various deicing chemicals mixed, NS40(70%)+calcium chloride(30%) showed the best effective method.

  • PDF

IN VITRO STUDY ON EXOTHERMIC REACTION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS MEASURED BY DIFFERENTIAL SCANNING CALORIMETRY

  • Ko, Mun-Jeung;Pae, Ahran;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.690-698
    • /
    • 2006
  • Statement of problems. The heat produced during polymerization of polymer-based provisional materials may cause thermal damage to the vital pulp. Purpose. This study was performed to evaluate the exotherm reaction of the polymerbased provisional materials during polymerization by differential scanning calorimetry and to compare the temperature changes of different types of resins. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Luxatemp Plus, Luxatemp Fluorescence) and five monomethacrylate- based material (Snap, Alike, Unifast TRAD, Duralay, Jet) were selected. Temperature changes of polymer-based provisional materials during polymerization in this study were evaluated by D.S.C Q-1000 (TA Instrument, Wilmington, DE, USA). The following three measurements were determined from the temperature versus time plot: (1) peak temperature, (2) time to reach peak temperature, (3) heat capacity. The data were statistically analyzed using one-way ANOVA and multiple comparison Bonferroni test at the significance level of 0.05. Results. The mean peak temperature was $39.5^{\circ}C({\pm}\;1.0)$. The peak temperature of the polymer-based provisional materials decreased in the following order: Duralay > Unifast TRAD, Alike > Jet > Luxatemp Plus, Protemp 3 Garant, Snap, Luxatemp Fluorescence. The mean time to reach peak temperature was 95.95 sec $({\pm}\;64.0)$. The mean time to reach peak temperature of the polymer-based provisional materials decreased in the following order: Snap, Jet > Duralay > Alike > Unifast TRAD > Luxatemp Plus, Protemp 3 Garant, Luxatemp Fluorescence. The mean heat capacity was 287.2 J/g $({\pm}\;107.68)$. The heat capacity of the polymer-based provisional materials decreased in the following order: Duralay > TRAD, Jet, Alike > Snap, Luxatemp Fluorescence, Protemp 3 Garant, Luxatemp Plus. Conclusion. The heat capacity of materials, determined by D.S.C., is a factor in determining the thermal insulating properties of restorative materials. The peak temperature of PMMA was significantly higher than others (PEMA, dimethacrylate). No significant differences were found among PEMA (Snap) and dimethacrylate (P >0.05). The time to reach peak temperature was greatest with PEMA, followed by PMMA and dimethacrylate. The heat capacity of PMMA was significantly higher than others (PEMA, dimethacrylate). No significant differences were found among PEMA and dimethacrylate (P >0.05).

Synthesis and Characterization of Guanidine Dinitramide Crystal (구아니딘 디나이트라아마이드 결정의 합성 및 특성 분석)

  • Kim, Wooram;Kwon, Younja;Jo, Youngmin;Park, Youngchul
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.737-742
    • /
    • 2015
  • An environmentally favorable solid oxidizer, guanidine dinitramide ($H_2C(NH_2)NH_2N(NO_2)_2$), with high purity and synthesis yield was prepared using guanidine carbonate ($NH_2C(=NH)NH_2{\cdot}1/2H_2CO_3$). Two different crystalline forms (${\alpha}$-form and ${\beta}$-form) were obtained depending on the solvent used and synthesis process. Despite of the same chemical composition, Raman-IR and TGA-DSC revealed that different structures existed between them. In particular, the thermal analysis showed the exothermic temperature of ${\alpha}$-form at $155.7^{\circ}C$ while $191.6^{\circ}C$ for ${\beta}$-form. The caloric value of ${\alpha}$-form was 536.4 J/g which was 2.5 times larger than that of ${\beta}$-form, 1310 J/g. In addition, ${\alpha}$-form was steeply decomposed with one-step variation, but ${\beta}$-form followed a two-step thermal decomposition pattern.