• 제목/요약/키워드: Exoskeleton robot

검색결과 88건 처리시간 0.038초

평지 보행을 위한 하지 근력증강 로봇 테스트베드 (Lower-limb Exoskeleton Testbed for Level Walking with Backpack Load)

  • 서창훈;김홍철;왕지현
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.309-315
    • /
    • 2015
  • This paper presents a lower-limb exoskeleton testbed and its control method. An exoskeleton is a wearable robotic system that can enhance wearer's muscle power or assist human's movements. Among a variety of its applications, especially for military purpose, a wearable robot can be very useful for carrying heavy loads during locomotion by augmenting soldiers' mobility and endurance. The locomotion test on a treadmill was performed up to maximum 4km/h walking speed wearing the lower-limb exoskeleton testbed with a 45kg backpack load.

하지 외골격 로봇을 위한 인솔 센서시스템 및 보행 판단 알고리즘 개발 (Development of Insole Sensor System and Gait Phase Detection Algorithm for Lower Extremity Exoskeleton)

  • 임동환;김완수;미안 아쉬팍 알리;한창수
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1065-1072
    • /
    • 2015
  • This paper is about the development of an insole sensor system that can determine the model of an exoskeleton robot for lower limb that is a multi-degree of freedom system. First, the study analyzed the kinematic model of an exoskeleton robot for the lower limb that changes according to the gait phase detection of a human. Based on the ground reaction force (GRF), which is generated when walking, to proceed with insole sensor development, the sensing type, location, and the number of sensors were selected. The center of pressure (COP) of the human foot was understood first, prior to the development of algorithm. Using the COP, an algorithm was developed that is capable of detecting the gait phase with small number of sensors. An experiment at 3 km/h speed was conducted on the developed sensor system to evaluate the developed insole sensor system and the gait phase detection algorithm.

외골격 로봇의 동작인식을 위한 보행의 운동학적 요인을 이용한 보행유형 분류 (Gait Type Classification Based on Kinematic Factors of Gait for Exoskeleton Robot Recognition)

  • 조재훈;봉원우;김동현;최현기
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.129-136
    • /
    • 2017
  • 외골격 로봇은 군사, 산업 및 의료와 같은 다양한 분야에서 사용되도록 개발된 기술이다. 외골격 로봇은 착용자의 움직임을 감지하여 작동한다. 외골격 로봇이 착용자의 일상적인 행동을 인지함으로써 착용자를 신속하게 보조하고 시스템을 효율적으로 활용할 수 있다. 본 연구에서는 피실험자로부터 얻은 운동학적 데이터를 통해 LDA, QDA, kNN을 활용하여 보행유형을 분류한다. 보행은 주로 일상생활에서 수행되는 일반보행과 계단보행을 선정하였다. 피실험자에게 7개의 IMUs 센서를 정해진 위치에 부착하여 운동학적 요소를 측정 하였다. 결과적으로, LDA는 78.42%, QDA는 86.16%, kNN는 k값에 따라 87.10% ~ 94.49%의 정확도로 분류하였다.

근력 지원용 외골격 로봇을 위한 수동형 무릎 관절 메커니즘 개발 (Development of a Passive Knee Mechanism for Lower Extremity Exoskeleton Robot)

  • 김호준;임동환;한창수
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, four-bar linkage mechanism for the knee joint is developed which is used in prosthetics. But unlike the prosthetics, the feature of this mechanism is that the instantaneous center of rotation of the four-bar linkages can be moved behind the ground reaction force vector so that it can be passively supported without any external power. In addition, this mechanism is developed similar to the structure of the human knee joint for eliminating the sense of heterogeneity of the wearer. In order to design the mechanism with these two objectives, optimization design process is done using the PIAnO tool and detailed design is carried out through optimized variable values. The developed mechanism is attached to the robot which can assist the hip and ankle joints. In order to verify the operation of the developed knee mechanism, an insole type sensor was attached to the shoes to compare data values before and after wearing the robot. Result data showed that wearer wearing the exoskeleton robot with the knee mechanism was the same value regardless of whether the heavy tool is loaded or not.