• 제목/요약/키워드: Exobrain

검색결과 4건 처리시간 0.015초

기계학습을 이용한 기록 텍스트 자동분류 사례 연구 (A Study on Automatic Classification of Record Text Using Machine Learning)

  • 김해찬솔;안대진;임진희;이해영
    • 정보관리학회지
    • /
    • 제34권4호
    • /
    • pp.321-344
    • /
    • 2017
  • 기록이나 문헌의 자동분류에 관한 연구는 오래 전부터 시작되었다. 최근에는 인공지능 기술이 발전하면서 기계학습이나 딥러닝을 접목한 연구로 발전되고 있다. 이 연구에서는 우선 문헌의 자동분류와 인공지능의 학습방식이 발전해 온 과정을 살펴보았다. 또 기계학습 중 특히 지도학습 방식의 특징과 다양한 사례를 통해 기록관리 분야에 인공지능 기술을 적용해야 할 필요성에 대해 알아보았다. 그리고 실제로 지도학습 방식으로 서울시의 결재문서를 ETRI의 엑소브레인을 통해 정부기능분류체계로 자동분류해 보았다. 이를 통해 기록을 다양한 방식의 분류체계로 자동분류하기 위한 각 과정의 고려사항을 도출하였다.

의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식 (Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters)

  • 임수종;임준호;이충희;김현기
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.773-780
    • /
    • 2016
  • 기계학습 기반의 의미역 인식에서 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 의미 정보 또한 매우 유용한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 의미 정보를 활용하는 방안으로 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 의미 프레임 정보 확장, 구문-의미 정보 연동 규칙, 필수 의미역 오류 보정 등을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.77, 위키피디아 문서 기반의 Exobrain GS 3.0 평가셋에서는 8.05의 성능 향상을 보였다.

국가위기관리를 위한 인공지능 활용 가능성에 관한 고찰: 인공지능 운용과 연구개발 사례를 중심으로 (A Study on the Possibility of Utilizing Artificial Intelligence for National Crisis Management: Focusing on the Management of Artificial Intelligence and R&D Cases)

  • 최원상
    • 디지털융복합연구
    • /
    • 제19권3호
    • /
    • pp.81-88
    • /
    • 2021
  • 현대사회는 다양한 형태의 위기에 노출되어 있다. 특히, 9·11테러 이후로 각 국가는 비군사적 위기에 대한 관리의 비중이 점차 커지고 있다. 이에 본 연구에서는 제4차 산업혁명시대에서 국가위기관리를 위해 인공지능(AI)을 활용하는 방안에 관한 고찰을 목적으로 한다. 이를 위해 인간의 의사결정을 지원해주기 위해 운용되고 연구개발(R&D) 중인 인공지능(AI)의 실효성을 분석하여 인공지능(AI)을 국가위기관리에 활용 가능성을 살펴보았다. 연구결과, 인공지능(AI)은 데이터에 근거한 객관적인 상황 판단과 최적의 대응 방안을 정책결정권자에게 제시해주어 급박한 위기 상황에서 정책결정권자의 결정행위를 지원해주는 것이 가능하여 인공지능(AI)을 국가위기관리에 활용하는 것이 효율적임을 알 수 있었다. 이러한 연구결과는 신속하고 효율적인 국가위기 대응을 위해 인공지능(AI) 활용의 가능성을 제시해 준다.

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.11-17
    • /
    • 2020
  • 본 논문에서는 지능형 전장인식 서비스를 위한 자연어처리 기반 지식베이스 구축 방안에 대해 연구한다. 현재의 지휘통제체계는 수집된 전장정보와 전술데이터를 등록, 저장, 공유 등의 기본적인 수준에서 관리 및 활용하고 있으며, 분석관에 의한 정보/데이터 융합 및 상황 분석/판단이 수행되고 있다. 이는 분석가의 시간적 제약과 인지적 한계로 일반적으로 하나의 해석만이 도출되며 편향된 사고가 반영될 수 있다. 따라서 지휘통제체계의 전장상황인식 및 지휘결심지원 지능화가 필수적이다. 이를 위해서는 지휘통제체계에 특화된 지식베이스를 구축하고 이를 기반으로 하는 지능형 전장인식 서비스 개발이 선행되어야 한다. 본 논문에서는, 민간 데이터인 엑소브레인 말뭉치에서 제시된 개체명 중 의미 있는 상위 250개 타입을 적용하고 전장정보를 적절히 표현하기 위해 무기체계 개체명 타입을 추가 식별하였다. 이를 바탕으로 멘션 추출, 상호참조해결 및 관계 추출 과정을 거치는 전장인식 지식베이스 구축 방안을 제시하였다.