• Title/Summary/Keyword: ExoU gene

Search Result 4, Processing Time 0.016 seconds

Heterologous Expression and Characterization of a Novel Exo-Polygalacturonase from Aspergillus fumigatus Af293 and Its Application in Juice Extraction

  • Chengwei Yang;Ting Zhang;Jing Zhu;Yunyi Wei;Furong Zhu;Zhong Cheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.533-542
    • /
    • 2023
  • Exo-polygalacturonase (exo-PG) hydrolyzes pectin acids and liberates mono-galacturonate, which plays an important role in juice extraction, and has rarely been reported. Exo-PG (AfumExoPG28A) from Aspergillus fumigatus belongs to the glycoside hydrolase 28 family. In this study, its gene was cloned and the protein was expressed and secreted in Pichia pastoris with a maximal activity of 4.44 U/ml. The optimal temperature and pH of AfumExoPG28A were 55℃ and 4.0, respectively. The enzyme exhibited activity over almost the entire acidic pH range (>20.0% activity at pH 2.5-6.5) and remained stable at pH 2.5-10.0 for 24 h. The Km and Vmax values of AfumExoPG28A were calculated by the substrate of polygalacturonic acid as 25.4 mg/ml and 23.6 U/mg, respectively. Addition of AfumExoPG28A (0.8 U/mg) increased the light transmittance and juice yield of plantain pulp by 11.7% and 9%, respectively. Combining AfumExoPG28A (0.8 U/mg) with an endo-PG (0.8 U/mg) from our laboratory, the enzymes increased the light transmittance and juice yield of plantain pulp by 45.7% and 10%, respectively. Thus, the enzyme's potential value in juice production was revealed by the remarkable acidic properties and catalytic activity in fruit pulp.

Molecular Detection of Virulence Factors in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from a Tertiary Hospital in Daejeon (대전지역의 3차 병원에서 분리된 Carbapenem 내성 Pseudomonas aeruginosa의 병독성 인자 검출)

  • Cho, Hye Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.301-308
    • /
    • 2019
  • The emergence and spread of multidrug resistant (MDR) Pseudomonas aeruginosa is a critical problem worldwide. The pathogenesis of P. aeruginosa is due partly to the production of several cell-associated and extracellular virulence factors. This study examined the distribution of virulence factors and antimicrobial resistance patterns of carbapenem-resistant P. aeruginosa (CRPA) isolated from a tertiary hospital in Daejeon, Korea. Antimicrobial susceptibility testing was performed using the disk diffusion method, and PCR and DNA sequencing were performed to determine for the presence of virulence genes. In addition, the sequence type (ST) of MDR P. aeruginosa was investigated by multilocus sequence typing (MLST). Among 32 CRPA isolates, 14 (43.8%) were MDR and the major ST was ST235 (10 isolates, 71.4%). All isolates were positive for the presence of virulence genes and the most prevalent virulence genes were toxA, plcN, and phzM (100%). All isolates carried at least eight or more different virulence genes and nine (28.1%) isolates had 15 virulence genes. The presence of the exoU gene was detected in 71.4% of the MDR P. aeruginosa isolates. These results indicate that the presence of the exoU gene can be a predictive marker for the persistence of MDR P. aeruginosa isolates.

Molecular Cloning and Functional Expression of Extracellular Exo-β-(1,3)-Glucanase from Candida fermentati SI (Candida fermentati SI의 exo-β-(1,3)-glucanase유전자의 클로닝 및 그 특성)

  • Lim, Yu-Mi;Kim, Bong-Ki;Kim, Sang-Jun;So, Jai-Hyun;Kim, Won-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.317-323
    • /
    • 2016
  • An isoflavone glucosidase that catalyzes the hydrolysis of isoflavone glucosides into glucose and corresponding aglycones was purified from Candida fermentati SI. The N-terminal sequence was determined to be GLNCDYCN. We designed degenerate primers on the basis of these amino acid sequences and successfully cloned the full structural gene sequence of the isoflavone glucosidase using inverse PCR. The exo-β-(1,3)-glucanase gene consists of 1227 base-pair nucleotides, encoding a 408-amino-acid sequence that shares 41–96% amino acid homology with other yeast exo-β-(1,3)-glucanases belonging to glycoside hydrolase family 5. The recombinant exo-β-(1,3)-glucanase was expressed in Pichia pastoris X-33, using a pPICZA vector system, and further characterized. The molecular mass of the purified exo-β-(1,3)-glucanase was estimated by SDS-PAGE to be 47 kDa. The optimal pH and temperature were pH 4.5 and 40℃, respectively. The Km values of the purified exo-β-(1,3)-glucanase for daidzin and genistin were 0.12 mM and 0.14 mM, respectively. The Vmax values of the purified isoflavone glucosidase were 945.03 U/mg for daidzin and 835.92 U/mg and for genistin.

Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae

  • Wu, Dingxin;Wang, Linchun;Li, Yuwei;Zhao, Shumiao;Peng, Nan;Liang, Yunxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.347-355
    • /
    • 2016
  • An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50℃; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50℃ than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.