• 제목/요약/키워드: Existing Reinforced Concrete

검색결과 783건 처리시간 0.026초

Concrete Shear Strength of HIRC Beams Reinforced with a SMA

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • 제20권3호
    • /
    • pp.75-82
    • /
    • 2018
  • The aim of the study is to evaluate the concrete shear strength and structural behavior of two general beams and eight shape memory alloys (SMAs)-reinforced beams under the flexural test. This work compares the existing reference formula for concrete shear strength with test result to provide the basic data for the design of highly intelligent reinforced concrete (hereinafter, HIRC) beams. The evaluation of the concrete shear strength was performed with effective depth (d=65, 70, 80), SMA diameter change (ø=2.0, 2.5) as the main variables of the specimens. For the relationship between the effective depth and the $V_{\exp}/V_{cal}$, the test result shows that the concrete shear strength gradually approaches 1.0 as the effective depth length increase. For the AIJ formula, the specimens are approached evenly for comparison between $V_{\exp}/V_{cal}$ and the by-product (garnet, fly-ash) reinforced specimen; however, other formulas indicate a deviation.

Nonlinear finite element analysis of fibre reinforced concrete deep beams

  • Swaddiwudhipong, S.
    • Structural Engineering and Mechanics
    • /
    • 제4권4호
    • /
    • pp.437-450
    • /
    • 1996
  • A study on the behaviour of fibre reinforced concrete deep beams with and without web openings is carried out using nonlinear finite element analysis. Eight node isoparametric plane stress elements are employed to model the fibre reinforced concrete materials. Steel bars are treated using a compatible three node truss elements. The constitutive equations for fibre reinforced concrete materials take into account the softening effect of co-existing shear strains. Element stiffness at each step is formulated based on the tangent modulus at the current level of principal strains. Transformation between principal directions and global coordinate system is imposed. Comparison of analytical results with experimental values indicates reasonably good agreement. The proposed numerical model can be used to study the behaviour of this composite structures of practically any geometries.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Natural time period equations for moment resisting reinforced concrete structures comprising hollow sections

  • Prajapati, Satya Sundar;Far, Harry;Aghayarzadeh, Mehdi
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.317-325
    • /
    • 2020
  • A precise estimation of the natural time period of buildings improves design quality, causes a significant reduction of the buildings' weight, and eventually leads to a cost-effective design. In this study, in order to optimise the reinforced concrete frames design, some symmetrical and unsymmetrical buildings composed of solid and hollow members have been simulated using finite element software SAP 2000. In numerical models, different parameters such as overturning moment, story drift, deflection, base reactions, and stiffness of the buildings were investigated and the results have been compared with strength and serviceability limit criteria proposed by Australian Standard (AS 3600 2018). Comparing the results of the numerical modelling with existing standards and performing a cost analysis proved the merits of hollow box sections compared to solid sections. Finally, based on numerical simulation results, two equations for natural time period of moment resisting reinforced concrete buildings have been presented. Both derived equations reflected higher degree of correlation and reliability with different complexities of building when compared with existing standards and relationships provided by other scholars. Therefore, these equations will assist practicing engineers to predict elastic behaivour of structures more precisely.

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

FRP 보강근을 사용한 콘크리트 보의 신뢰성 해석 (Reliability Assessment of Concrete Beams Reinforced with GFRP Bars)

  • 남호윤;서대원;한범석;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.185-188
    • /
    • 2008
  • FRP 보강근은 철근부식의 근본적인 대책으로서 높은 인장강도와 내부식성이 우수한 재료이다. 그러나 낮은 탄성계수로 인해 부재의 처짐 및 균열이 철근콘크리트를 사용한 부재에 비하여 크게 발생하는 문제점이 있으며, 취성적인 성질로 인하여 파괴가 급격히 발생할 우려가 있다. 이러한 FRP 보강근을 구조부재에 사용하기 위해서는 기존의 철근콘크리트 부재설계와는 다른 개념이 필요하며, 이미 구조부재에 FRP 보강근을 사용하고 있는 외국의 경우 기존의 FRP 보강근을 사용한 구조부재의 설계를 위한 제안식들은 실험에 의한 계수의 추가 등으로 철근콘크리트 구조설계식을 수정하는 형태로서 제안되어지고 있다. 그러나 이러한 방법은 설계식을 복잡하게 하며, 철근콘크리트와 다른 FRP 보강근의 특성을 적절히 반영하고 있다고 할 수 없다. 또한, 기존의 설계식의 수정된 형태에서는 하중저감계수와 같은 안전계수(safety factor)를 제안하고 있으나, 정확한 신뢰성레벨은 알지 못하며, 실험에 의한 경험적 값의 성격이 강하다. 따라서 본 연구에서는 FRP bar를 사용한 보의 불확실성을 조사하고, FRP bar를 사용한 부재의 신뢰성지수를 평가하였다.

  • PDF

A mixture theory based method for three-dimensional modeling of reinforced concrete members with embedded crack finite elements

  • Manzoli, O.L.;Oliver, J.;Huespe, A.E.;Diaz, G.
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.401-416
    • /
    • 2008
  • The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 3D composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Seismic Consideration of Reinforced Concrete Wall Section

  • Kim, Jang-Hoon
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.210-215
    • /
    • 2003
  • Seismic capacity of reinforced concrete bearing wall subjected to high axial loading and moment can be attained by improving the deformability of compression zone or by reducing the neutral axis depth. For this two existing options for ductility enhancement were reviewed and improved to conveniently apply to the seismic improvement of compression zone of the wall: (1) end confinement of concrete due to transverse steel and (2) boundary element.

  • PDF

Compressive behavior of short fibrous reinforced concrete members with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.649-669
    • /
    • 2011
  • In this paper an analytical model is presented that addresses the compressive response of short-fiber reinforced concrete members (FRC) with hooked steel fibers. This model is applicable to a wide range of concrete strengths and accounts for the interaction between the cover spalling and the concrete core confinement induced by transverse steel stirrups and also for buckling of longitudinal reinforcing bars. The load-shortening curves generated here analytically fit existing experimental data well.

Determining the shear strength of FRP-RC beams using soft computing and code methods

  • Yavuz, Gunnur
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.49-60
    • /
    • 2019
  • In recent years, multiple experimental studies have been performed on using fiber reinforced polymer (FRP) bars in reinforced concrete (RC) structural members. FRP bars provide a new type of reinforcement that avoids the corrosion of traditional steel reinforcement. In this study, predicting the shear strength of RC beams with FRP longitudinal bars using artificial neural networks (ANNs) is investigated as a different approach from the current specific codes. An ANN model was developed using the experimental data of 104 FRP-RC specimens from an existing database in the literature. Seven different input parameters affecting the shear strength of FRP bar reinforced RC beams were selected to create the ANN structure. The most convenient ANN algorithm was determined as traingdx. The results from current codes (ACI440.1R-15 and JSCE) and existing literature in predicting the shear strength of FRP-RC beams were investigated using the identical test data. The study shows that the ANN model produces acceptable predictions for the ultimate shear strength of FRP-RC beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model provides more accurate predictions for the shear capacity than the other computed methods in the ACI440.1R-15, JSCE codes and existing literature for considering different performance parameters.