• 제목/요약/키워드: Exhaust-gas Pressure

검색결과 498건 처리시간 0.027초

자동차 배기성능개선을 위한 확장형 공동파이프에 관한 연구 (A Study on the Expansion Cavity Pipe for Performance Improvement of Exhaust System in Automotive)

  • 손성만;박경석
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-6
    • /
    • 2009
  • The temperature of exhaust gas was raised by increasing of engine movement on developing engine. Thermal of high temperature and pressure reverse in bellows, because of increasing of engine movement and the thermal performance of converter in combustion. As a result, thermal loss is increased and thermal efficiency is decreased rapidly in bellows, it can occur to damage in mechanical structure. In this study, it was necessary to analyze back pressure performance and thermal characteristic on driving condition in exhaust system. It was adapted braid type bellows and straight type exhaust pipe. It was compared with curve type exhaust pipe for lay-out on considering to design of exhaust system. It was necessary to improve thermal characteristic and back pressure performance so that expansion cavity pipe(ECP) was installed between bellows and catalyst convert. Not only decreasing back pressure was solved but also thermal characteristic problems in exhaust pipe because of increasing capacity. According to this study, the basis of data is presented when new exhaust system is designed.

배기가스의 온도 및 HC와 $O_2$의 조성 변화에 따른 DOC-CDPF의 재생 특성에 관한 실험적 연구 (An Experimental Study on Regeneration Characteristics by Variation of Exhaust Gas Temperature, HC and $O_2$ Concentrations on DOC-CDPF System)

  • 조용석;이성욱;이정섭;윤여빈;박영준
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2009
  • A catalyzed diesel particulate filter (CDPF) causes the progressive increase in back pressure of an exhaust system due to the loading of soot particles. To minimize pressure drop which is generated by CDPF, the filter should be regenerated when it collects a certain quantity of soot. It is important to know characteristics of regeneration of CDPF with various of exhaust gas temperatures and compositions. The oxidation of HC in DOC leads to increase gas temperature of DOC downstream. The increased gas temperature by DOC has an positive effect on CDPF regeneration. This study presents characteristics of regeneration of CDPF with DOC according to various gas composition, such as HC and $O_2$ concentration. The test-rig is used to control each gas composition and temperature during regeneration of CDPF. Experimental results indicate that the increased concentration of $O_2$ regenerates DPF more actively. With increasing HC concentration, the gas temperature of CDPF upstream increased due to more oxidation of HC. But excessive supply of HC leads to decrease of $O_2$ concentration in the CDPF, which makes it hard to regenerate CDPF.

구형축열체를 이용한 축열기의 설계인자도출 (Derivation of Design Parameter for Heat Regenerator with Spherical Particles)

  • 조한창;조길원;이용국
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

잔류가스 추정 기법을 이용한 EGR율의 예측 (Estimation of Exhaust Gas Recirculation using In-Cylinder Residual Gas Fraction in an SI Engine)

  • 김득상;김성철;황승환;조용석;엄인용
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.55-60
    • /
    • 2004
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was suggested. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual gas fraction was derived by comparing the total charging and fresh air. This results coincide with measured EGR value very well.

스파크 점화 기관에서 밸브오버랩이 잔류가스율 변화에 미치는 영향 (Effect of Operating Conditions on the Residual Gas Fraction in an SI Engine)

  • 장진영;박용국;배충식;김우태
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.11-18
    • /
    • 2002
  • Residual gas fraction in an engine cylinder affects engine performance, efficiency and emission characteristics. With high residual gas fractions, a flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. In this work, the residual gas fraction was calculated by an engine simulation code, which was validated by the experimental data (cylinder pressure and emissions) obtained from 4-cyliner spark ignition engine. A comparison between experimental and computational calculation results was made. The residual gas is generated mostly at low engine speed by the larger pressure difference between the intake and exhaust port. As the valve overlap duration was increased, the amount of residual gas in the cylinder, the amount of HC emission in the exhaust gas and the variation of power output increased.

코안다 노즐에서 중심 축소관 유무에 따른 유입량 특성 (Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor)

  • 하지수;심성훈
    • 한국가스학회지
    • /
    • 제18권2호
    • /
    • pp.21-27
    • /
    • 2014
  • MILD 연소는 고온의 배기가스를 연소로 내에 재유입 되는 양에 따라 질소산화물 저감 특성에 많은 영향을 받는다. 본 연구에서는 MILD 연소로에서 고온의 배기가스를 연소로 내에 재순환하기 위해 코안다 노즐을 사용하였는데. 코안다 노즐의 중심에 중심 축소관을 설치한 경우와 설치하지 않은 경우에 고압공기 유량, 배기가스 유입량 특성을 수치해석을 통해 살펴봄으로써 최적의 코안다 노즐 형상을 도출하는 것을 연구의 목적으로 하였다. 본 연구의 전산 해석의 결과는 혼합가스 출구의 압력이 대기압일 때는 중심축소관이 없을 때가 배기가스 유입량이 약 18% 크게 나타나고 혼합가스 출구 압력이 증가하면 중심축소관이 있을 때가 유입량이 더 큼일 알 수 있었다. 이에 대한 분석은 노즐 목에서의 압력, 유입가스 입구와 혼합가스 출구 압력 그리고 유동 단면적으로 구성한 유입 구동력으로 해석 가능하였다.

ANALYSIS OF GAS-DYNAMIC EFFECTS IN COMPACT EXHAUST SYSTEMS OF SMALL TWO-STROKE ENGINES

  • Galindo, J.;Serrano, J.R.;Climent, H.;Tiseira, A.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.403-411
    • /
    • 2007
  • This article describes a methodology based on experiments and 1D modeling work related to the exhaust system analysis of a small two-stroke engine. The primary goal of this work was to understand how the design criteria of a compact exhaust system influenced the exhaust port pressure, since its evolution controls not only engine performance but also exhaust emissions. On the experimental side, a fully instrumented 50cc two-stroke engine was used to check the behavior of three different exhaust systems. A problem related to instantaneous pressure measurements in unsteady, hot flow was detected and solved during the study. To build the 1D model of the three exhaust systems, experimental information on the steady flow and the impulse test rigs was obtained under controlled conditions in specific facilities. Accurate comparisons between measured and calculated exhaust port instantaneous pressures were obtained from the following different exhaust system configurations: a straight duct, a tapered pipe and the three compact exhaust systems. The last step in the method used this model to analyze the pressure waves inside the exhaust system and detect the influence of the geometric parameters. The results should lead to improvements in the design process of complex compact exhaust systems in two-stroke engines.

모터사이클 머플러 내부 열.유동에 관한 시뮬레이션 (A Simulation on the Thermal and Fluid about Motorcycle Muffler)

  • 이중섭;지명국;심규진;정한식;이철재;배재영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2642-2647
    • /
    • 2007
  • This study represents numerical study on the thermal and fluid flow characteristics of exhaust gas in a motorcycle muffler. The reference engine was used 124.cc small displacement. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the exhaust gas that flow into a motorcycle muffler. The STAR-CD S/W used to three dimensional steady state CFD analysis in a muffler. And than We got the information of static pressure it is used to structural analysis ant the first baffle plate using the commercial CAE code ANSYS workbench. Exhaust gas flow third chamber from frist chamber and running second chamber. A simulation result shows that each chamber of muffler temperature is about 460 K, 445 and 463K and pressure is about 22,000 Pa, 16,000 Pa and 10,000 Pa.

  • PDF

EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE OPERATION WITH EXHAUST GAS RECIRCULATION

  • Choi, G.H.;Han, S.B.;Dibble, R.W.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.195-200
    • /
    • 2004
  • This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. The objective of this research is to determine the effects of Exhaust Gas Recirculation (EGR) rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

대형디젤기관에서 EGR에 의한 배출가스 연구 (A Exhaust Gas Study by EGR in Heavy-Duty Diesel Engine)

  • 한영출;류정호;오용석;이현우;강호인
    • 한국대기환경학회지
    • /
    • 제16권3호
    • /
    • pp.285-291
    • /
    • 2000
  • EGR(Exhaust Gas Recirculation) is known as the technique reducing the NOx emissions from diesel engine. Low pressure roote and high pressure roote are applied for heavy-duty diesel engine are. In this study, as research for the heavy duty diesel engine equipped with EGR, reduction characteristic of CO, THC, NOx, and PM in HD diesel engines are investigated by applying EGR device. Also, through the experiments using 11 liters, turbocharged diesel engine with EGR valve and intercooler, exhaust gas reduction characteristics were measured as changing in EGR rate according to D-13 mode.

  • PDF