• Title/Summary/Keyword: Exhaust valve

Search Result 265, Processing Time 0.022 seconds

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

An Experimental Study on Friction Welding and Heat Treatment of Engine Exhaust Valve Steels ( SCr4-21-4 N , SUH3-21-4-N (기관배기 밸브용 강 ( SCr4-21-4N , SUH3-21-4N ) 의 마찰압접과 열처리에 관한 실험적 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.79-87
    • /
    • 1978
  • This is an experimental study on friction welding and heat treatment of engine exhaust valve materials whose welding combination is SCr4 as stem to 21-4N as head and SUH3 to 21-4N. In this study, not only the experiments of friction welding under the selected optimum welding condition and the examination of the mechanical properties were carried out, but also the heat treatment of friction welded specimens under the two selected conditions was taken to obtain the better welding character, eliminating the latent stress and the hardness peak which appeared at the welded zones of heat resisting steel(21-4N, SUH3) and low alloyed steel ($SCr_4$) friction weldments. The results obtained by the experiments and consideration in this study are as follows: I) It was experimentally proved quite reasonable that 'speed=3,OOO rpm, heating pressure Pl=8 kg/ mm2, upsetting pressure p, = 20 kg/mm', heating time $t_1$ = 3 see, upsetting time TEX>$t_2$ = 2.5 sec' was selected as the optimum welding condition for friction-welding the engine exhaust valve materials $SCr_4$ to 21-4 Nand SUH 3 to 21-4 N. 2) The results of the previous study and this one on friction welding of such dissimilar materials as SUH 3-SUH 31, SCr 4-SUH 31, SCr 4-SUH 3, SUH 3-CRK 22, SCr4-21-4 Nand SUH3-21-4 N agreed with each other substantially in the friction welding characteristics at welded interface zones. 3) It was also certified quite satisfactory that '600\ulcornerCX30 min. Xroom air cooling' as an optimum heat treatment condition of the friction welded materials SCr 4-21-4 Nand SUH 3-21-4 N was experimentally determined to eliminate the latent stress and the hardness peak at welded zones. 4) About 20% of the tensile strength before heat treatment of friction welded specimens was decreased after heat treatment 600\ulcornerCX30 min. Xair cooling, but the location of fracture was moved from heat affected zone to parent $SCr_4$ & SUH3. 5) Microscopic examination of the weld joints friction-welded and heat-treated under the above mentioned conditions revealed that the weld zone is very narrow and has a fine grained intermixed structure without any welding defects. 6) The above mentioned conditions can be also utilized as friction welding parameters of the other dissimiar materials for engine valve production.

  • PDF

Experimental investigation on valve rattle noise of automotive electronic-wastegate turbochargers (차량용 전자식 웨이스트 게이트 터보차져의 밸브 떨림음에 대한 실험적 고찰)

  • Park, Hoil;Eom, Sangbong;Kim, Youngkang;Hwang, Junyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.686-686
    • /
    • 2013
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. In addition to, there is a mechanical noise caused from movement of an actuator, electronically controlling a wastegate valve. It is called as valve rattle noise. The actuator is connected to a valve through a linkage. The noise occurs only if the valve is open, where the linkage is freely contact to neighbor structures without being constrained by any external forces. This condition allows impacts by the pulsation of exhaust gas, and the vibration from the impacts spreads out through turbine housing, causing the rattle noise. The noise is not in mechanical operating wastegate turbochargers because the linkage of an actuator is strongly connected by actuating force. For the electronic wastegate turbocharger, this paper proposed a test device to show the noise generating mechanism with a small vibration motor having an unbalanced shaft. It also shows how to reduce the noise - reduction of linkage clearances, inserting wave washers into a connection, and applying loose fitting in bushing embracing a valve lever to turbine housing.

  • PDF

A Design and Application of the Ventilating and Heating System of T-103 Trainer Aircraft for Improvement (T-103 훈련기의 환기와 난방 시스템 개선에 관한 연구)

  • Jung, Daehan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • In this paper, the ventilating and heating system of T-103 trainer aircraft were investigated and redesigned to improve its poor performance. The ventilation system of the trainer was designed to increase the mass flow rate of fresh air by using air intake valves. The flow-in air through the air intake valve is supplied to the cabin by the ram effect of aircraft and the propeller. And the additional heating system was installed to improve the temperature of the cabin inside. The wasted heat from the exhaust gas of the engines was used as heat source of the additional heating system by installing an heat exchanger around the exhaust nozzle. The additional fresh air and the heated air enter the cabin via two ducts mounted under the instrument panel and behind the pedal in the cabin. The additional ventilating and heating system can be controlled by the first pilot and the secondary pilot individually using the control knob equipped separately. After mounting the additional ventilating and heating system, evaluations such as inspection of parts and component, ground run-up test, in-flight test, user test, etc. were conducted. The result of the tests was sufficient to meet the requirements of the manuals, and the pilots were satisfied with the additionally mounted systems.

An Experimental Study on Performance and the Exhaust Emissions in a Small High Speed Gas Engine by Using Natural Gas and Hydrogen Fuel (천연가스 및 수소연료를 사용하는 소형 고속 가스엔진에 있어서 성능 및 배기 특성)

  • Kim B.S.;Shioji M.;Chu B. G.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.20-26
    • /
    • 2000
  • In this experimental study, we examined gas engine characteristics of a small high-speed engine in various ways. And we studied performance of natural gas, hydrogen gas and gasoline fuel engines, as emission characteristics and process of combustion. For the purpose of preventing back-fire occurred in case of high-speed and high load in hydrogen engine, we controlled air quantity by installing throttle valve in gas fuel engine. We performed experiment by mixing nitrogen to hydrogen fuel. As a result, we could find out characteristics which of a high speed small engine by applying gas fuels.

  • PDF

A study on engine performances and exhaust emissions using gasoline-methanol as an alternative fuel (대체연료로서 가솔린-메타놀 혼합연료에 의한 가솔린 기관성능과 배출오염물에 관한 연구)

  • 김희철;용기중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-26
    • /
    • 1981
  • The purpose of this paper is to study the possibility of practical use of gasoline-methanol mixed fuel as an alternative fuel of gasoline engines in the light of engine performances and harmful exhaust emissions as well as mixings and separations of the mixed fuels. When the methanol of 99.8% purity is mixed with super or regular gasoline available on the market today, the experimental results obtained without modifying carburetor in this study are as follows; 1.The separation ratio depends upon the gasoline-methanol mixing ratio only, regardless of fuel temperature and fuel additives for preventing separation of phase. 2.The critical absorption ratio is affected by the gasoline-methanol mixing ratio, its temperature and the quantity of fuel additives. 3.Concerning the distillation temperature, the initial point of all sorts of fuels is almost same,but 10% point and 35-60% point of mixed fuels are lower than those of gasoline only. 4.In case of throttle valve opening set, engine output using the mixed fuels is decreased compared to gasoline, but thermal efficiency is increased as a consequence of decreasing specific energy consumption. 5.In case of fixed load test, thermal efficiency is increased at low engine speed even under low part-load as well as under comparatively high part-load including full load. 6.CO and NOx emissions are reduced remarkably with the mixed fuels.

  • PDF

Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

  • Lamas, M.I.;Rodriguez, C.G.;Rodriguez, J.D.;Telmo, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 2013
  • Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce $NO_x$ (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to $120^{\circ}$, modification of the intake valve closing from 510 to $570^{\circ}$, and modification of the cooling water temperature from 70 to $90^{\circ}C$. $NO_x$ was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in $NO_x$, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

A Cycle Simulation Method for an HCCI Engine using Detailed Chemical Kinetics (상세화학반응식을 이용한 HCCI 엔진의 성능 해석기법 연구)

  • 송봉하;김동광;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.51-58
    • /
    • 2003
  • A cycle simulation method is developed by coupling a commercial code, Ricardo's WAVE, with the SENKIN code from CHEMKIN packages to predict combustion characteristics of an HCCI engine. By solving detailed chemical kinetics the SENKIN code calculates the combustion products in the combustion chamber during the valve closing period, i.e. from IVC to EVO. Except the combustion chamber during the valve closing period the WAVE code solves thermodynamic status in the whole engine system. The cycle simulation of the complete engine system is made possible by exchanging the numerical solutions between the codes on the coupling positions of the intake port at IVC and of the exhaust port at EVO. This method is validated against the available experimental data from recent literatures. Auto ignition timing and cylinder pressure are well predicted for various engine operating conditions including a very high ECR rate although it shows a trend of sharp increase in cylinder pressure immediate after auto ignition. This trend is overpredicted especially for EGR cases, which may be due to the assumption of single-zone combustion model and the limit of the chemical kinetic model for the prediction of turbulent air-fuel mixing phenomena. A further work would be needed for the implementation of a multi-zone combustion model and the effect of turbulent mixing into the method.