• Title/Summary/Keyword: Exhaust soot

Search Result 196, Processing Time 0.019 seconds

Experimental Study on Exhaust Scrubber Type EGR System for High Speed Diesel Engine (고속 디젤기관의 배기배출물에 미치는 스크러버형 배기가스 재순환계의 실험적 연구)

  • Park, Tae-In;Kim, Tae-Gwon;Hong, Sun-Cheol
    • 연구논문집
    • /
    • s.24
    • /
    • pp.5-11
    • /
    • 1994
  • EGR is an efficient method for reduction of NOx from diesel exhaust emission since it is simple to install with low cost and effective in its performance however it has demerits such as incresing wear on the moving parts of engines. stainning intake system and deteriorate lubricating oil. In order to reduce the soot contents in the recirculating gas to intake system of the engine, a proper filtering device was desined and manufactered for experiment system. It is aimed to grasp the characteristics of pollutant emissions including SFC on EGR system equipped with soot removal device.

  • PDF

A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System (EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

A Study on the Performance of Soot Probe of Diesel Vehicles using Free Acceleration Mode Method (무부하급가속검사방법을 이용한 디젤자동차의 매연프로브 성능에 관한 연구)

  • Kim, Jae-Yeol;Chae, Il-Seok;Oh, Hoo-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.40-46
    • /
    • 2020
  • Inspection of vehicle systems is regularly performed by the state to ensure the emission status and the safety of vehicles. Thereby, the safety and quality of life can be improved by reducing green-house gases and fine dust, which are the main causes of vehicle defects and air pollution. This study analyzed the soot measuring probes used in the free acceleration mode method, at no-load condition, looking at the efficiency of a probe to measure soot emissions from diesel vehicles. In this study, a technique that can improve the inhalation efficiency of the probe over the (a) probes and the improved (b) probes was applied to probes (c). Probe (c) involves a structure designed close to the center of the circumference of the exhaust pipe. Results showed that the suction efficiency was improved by adding a variable center unit.

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

Estimation of the Exhaust Characteristics of Biodiesel Used in Diesel Engine (디젤엔진에서 바이오디젤의 배기가스 특성 평가)

  • Baek, Seok Heum;Yoon, Jeong Hwan;Jung, Woo Sung;Ha, Hyeong Soo;Chung, Sung Sik;Yeom, Jeong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • In this study, the characteristics of exhaust gas as a function of the biodiesel mixing ratio were investigated. Diesel and waste oil were used for preparing mixed fuel, and the ratios of the mixed fuel were varied in the BD3~BD100 range. The injection pressures(${\Delta}p_{inj}$) was considered as an experimental variable and was set to 400 bar, 600 bar, 800 bar, 1000 bar, and 1200 bar. Furthermore, for quantitatively analyzing the characteristics of exhaust gas(NOx and Soot), the concepts of Pearson correlation coefficient and Spearman rank-order correlation coefficient based on statistics were introduced. Consequently, it was found that the correlation of the emission of NOx and Soot is linear, and the Pearson and Spearman coefficients are -0.732 and -0.724, respectively, under all analysis conditions. Especially, for the injection pressure of 800 bar, a simultaneous reduction in NOx and Soot emission is possible by controlling the biodiesel mixing ratio. This is because the correlation coefficients of NOx and Soot emissions were nearly 0, as the Pearson correlation coefficient was -0.089.

Soot Concentration Measurement in Diesel Engine Using Laser Sheet Beam (레이저 시트빔을 이용한 디젤엔진의 Soot 농도 계측)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 2000
  • Recently the laser sheet technique has been developed to improve our limited understanding of the in-cylinder diesel combustion. The technique is capable of high temporal and spatial resolution, so that it is proved to be an adequate combustion diagnostics to find out exhaust emission formation. The optical signals of LIS(Laser Induced Scattering) and LII(Laser Induced Incandescence) images show informations for soot concentration within the optically accessible diesel engine. The LIS and LII signal images of soot concentration provide new insight into where and when soot occurs in a diesel engine.

  • PDF

The Characteristics of Exhaust Gas in Diesel Engine by High Frequency Plasma-EGR System (고주파 플라즈마 시스템에 의안 디젤기관의 배기가스 특성)

  • Park, Jae-Yoon;Jung, Jang-Gun;Kim, Jong-Suk;Ha, Hyun-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.109-113
    • /
    • 2005
  • NOx, Soot and other exhausted components already became a dangerous state as principal materials of the air pollution. Therefore, the exhausted regulations are getting strict in the many countries. In this paper, reduction characteristic of NOx Soot and CO from diesel engine are investigated when MF plasma system is put to the diesel engine. NOx is decreased in all measured load and applied voltage to plasma reactor.

Sensitivity Study on the Infra-Red Signature of Naval Ship According to the Composition Ratio of Exhaust Plume (폐기가스 조성 비율이 적외선 신호에 미치는 영향 연구)

  • Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Infrared signatures emitted from naval ships are mainly classified into internal signatures generated by the internal combustion engine of the ship and external signatures generated from the surface of the ship heated by solar heat. The internal signatures are also affected by the chemical components ($CO_2$, $H_2O$, CO and soot) of the exhaust plumes generated by the gas turbine and diesel engine, which constitute the main propulsion system. Therefore, in this study, the chemical composition ratios of the exhaust plumes generated by the gas turbines and diesel engines installed in domestic naval ships were examined to identify the chemical components and their levels. The influence of the chemical components of the exhaust plumes and their ratios on the infrared signatures of a naval ship was investigated using orthogonal arrays. The infrared signature intensity of the exhaust plumes calculated using infrared signature analysis software was converted to the signal-to-noise ratio to facilitate the analysis. The signature analysis showed that $CO_2$, soot and $H_2O$ are the major components influencing the mid-wave infrared signatures of both the gas turbine and diesel engine. In addition, it was confirmed that $H_2O$ and $CO_2$ are the major components influencing the long-wave infrared signatures.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio (바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil) (디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로))

  • Lim, Jae-Keun;Choi, Soon-Youl;Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.