• Title/Summary/Keyword: Exhaust port

Search Result 170, Processing Time 0.022 seconds

Characteristics of HC Emissions by Starting Conditions in an SI Engine (가솔린 기관의 시동조건에 따른 HC의 배출특성)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

A Study on the Reduction of HC Emissions by Fuel Injection Methods during the SI Engine Start (가솔린기관의 시동시 연료분사기법에 의한 HC 배출저감 연구)

  • Kim, Seong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.257-262
    • /
    • 2003
  • Engine-out HC emissions were investigated during engine start. The tests were conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine at different coolant temperatures and fuel injection-skip methods; no skip, 1 cycle-skip and 3 cycle-skip. To understand the characteristics of engine-out HC emissions, HC concentration was measured at a exhaust port using a Fast Response Flame Ionization Detector (FRFID). The result show that HC emissions were emitted at the cold coolant temperature much higher than those of the hot coolant. In additions, the fuel injection skip highly reduced engine-out HC emissions. It is convinced that optimized fuel injection skips according to coolant temperatures could be applied to reduce HC emissions during SI engine start.

  • PDF

A Study on Engine-Out HC Emissions during Sl Engine Starting (전기점화 기관의 시동 시 미연탄화수소의 배출 특성 연구)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.22-30
    • /
    • 2003
  • Engine-out HC emissions were investigated during cold and hot start. The tests were conducted according to engine cooling temperatures which were controlled by simulated coolant temperatures of cold and hot start, on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured at a exhaust port and cylinder head using Fast Response Flame Ionization Detector(FRFID). Unburned hydrocarbons emitted at the cold coolant temperature were much higher than those of the hot coolant temperatures. And the main source of the high HC emission was confirmed as misfire at cold coolant temperature. In addition, the effect of intake valve timing on engine-out HC emissions was investigated. The results obtained indicate that optimized intake phasing provides the potential for start-up engine-out HC emissions reduction.

Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine (터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

An Experimental Study on the Performance Improvement and Emission Reduction in a Turbocharged D.I. Diesel Engine (과급식 디젤엔진의 성능개선 및 배기가스 저감에 관한 실험적 연구)

  • 윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.36-46
    • /
    • 2000
  • The performance improvement and emission reduction in a turbocharged D.I. diesel engine was studied experimentally in this paper. The system of intake port, fuel injection and turbochager are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, fuel injection system and turbocharger. The swirl ratio of intake port was modified by hand-working and measured by impulse swirl meter. Through this steady flow test, we knew that the increase of swirl ratio is decreasing the mean flow coefficient, whereas the gulf factor is increasing. And the optimum results of engine performance and emission are as follows; the swirl ratio is 2.43, injection timing is BTDC 13。 CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 AND turbine A/R 1.19.

  • PDF

The inventory analysis on exhaust gas from training ships for ship's LCA study (선박 전과정평가를 위한 실습선 배기가스 인벤토리 분석)

  • Im, Nam-Kyun;Jo, Ho-Jin
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2008
  • As the seriousness of the global environment is gaining our attention recently, studies on application of LCA(Life Cycle Assessment) to ship are being carried dynamically in various industry fields. However domestic study on LCA was not carried out in various fields. This study was carried out to examine the application of LCA to ship and was focused on the ship operation inventory analysis especially in life cycle assessment. Two training ships of Mokpo maritime university were adopted as ship models. Actual voyage data of at last several years was used to analysis the ship's exhaust gas inventory. The analysis shows how many weight of gas being exhaused per 1 gross tonnage and per 1 trainee in the training ships.

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

A Numerical Study on the Characteristics of Flow Field, Temperature and Concentration Distribution According to Changing the Shape of Separation Plate of Kitchen Hood System (주방용 후드시스템의 분리판 형상 변화에 따른 유동장, 온도 및 농도특성에 관한 수치적 연구)

  • Lee, Kwang-Sub;Lee, Chang-Hee;Lim, Kyoung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.177-185
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values. The three models having different shapes have one exhaust port and the model which has the vent at the closest position to where pollutes are generated is discovered to be the most efficient model. Compare to the initial model (having no separation plate), it was $1.4-1.9\%$ more efficient at temperature distribution and $9.4-11.9\%$ more at $CO_2$ concentration distribution.

A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter (적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어)

  • 김중일;장준석;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether (Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향)

  • Bae, Choong-Sik;Jang, Jin-Young;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.