• 제목/요약/키워드: Exhaust pollutants

검색결과 161건 처리시간 0.028초

철도차량에 의한 배기가스 배출량 예측에 관한 기초연구 (A Basic Study on the Estimation of Exhaust Emission Rates by Railroad Vehicles)

  • 박덕신;정우성;정병철;김태오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.392-397
    • /
    • 2001
  • As the air pollution caused by diesel vehicles goes worse, so non-road vehicles exhaust gas standard is strict in an foreign countries. In this paper, we calculate the amount of emission rates from Korean railroad lines and train kinds. Air pollutants emissions are calculated using by US EPA baseline in-use emission rates which is divided line-haul and switch mode. The calculated HC emissions on the railroad diesel vehicles are 1,209.1 t from Korean railroad lines.

  • PDF

터널 측정을 통한 비메탄계 탄화수소의 자동차 배출계수 산정 (Determination of vehicle emission factor of NMHC from a tunnel study)

  • Na Gwang-Sam;Kim Yong-Pyo;Kim Yeong-Seong;Mun Il
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2000년도 추계학술대회 논문집
    • /
    • pp.136-138
    • /
    • 2000
  • The vehicle emissions of primary air pollutants are described by the emission factor (EF), defined as the emitted mass (g) of a compound per distance (km) and vehicle. The EF can be determined by exhaust measurements from single vehicles in dynamometric tests. However, the EF of a large number of vehicles has to be measured to obtain the representative results for actual road traffic emissions. Road traffic emissions can also be determined by exhaust measurements of driving vehicles or in tunnel measurements. (omitted)

  • PDF

디젤기관차 엔진에서 배출되는 오염물질의 특성 분석 (Characteristic Analysis of Pollutant Emission from Diesel Locomotive Engine)

  • 박덕신;정우성;정병철;김동술
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.561-566
    • /
    • 2002
  • As the air pollution caused by diesel vehicles goes worse, so non-road vehicles exhaust gas standards are more strict in an foreign countries. There is growing evidence that diesel vehicles could play the important role in determining health effects. Most of the particle number emitted by diesel engines is in the nanopaticle range, D$\_$p/ < 50nm, while most of the mass is in the accumulation mode, 50nm < D$\_$p/ < 1000nm range. The aim of this work was to investigate pollutants in the exhaust of railroad diesel rolling stock under load tests.

  • PDF

기술사 마당 - 주방 후드 부스타 배기 방식

  • 진남기
    • 기술사
    • /
    • 제45권6호
    • /
    • pp.44-51
    • /
    • 2012
  • Local functional, closed the hood and exhaust are classified as open-style hood. Around the closed hood contaminants prevent the spread of contaminants. Surrounded Some pollutants (open-style hood is used in cases where the odor, vapor diffusion, and inferior) of indoor allowed to Hood expressions, which are used for kitchen, laboratory, factory canopy is typical. Contamination that occurs during cooking, kitchen ventilation barrier materials are the biggest problem, its solution by introducing fresh outside air in the kitchen troubleshoot and. Study on the kitchen exhaust airflow for my kitchen, and perform a number of each Institute and at the University of hydrodynamic analysis is investigated.

  • PDF

Evaluation of genotoxic potentials in diesel exhaust particulate matter with the Ames test, the comet assay and the micronucleus assay

  • Kim, Soung-Ho;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.165.1-165.1
    • /
    • 2003
  • This research was designed to examine the presence of mutagenic/carcinogenic compounds in airborne pollutants in diesel particulate matter using an integrated biological approach. Respirable air borne particulate matter (PM2.5: <2.5mm) was collected from diesel engine exhaust using a high-volume sampler equipped with a cascade impactor. (omitted)

  • PDF

EFFECT OF ENGINE OIL ON EXHAUST EMISSIONS

  • Maxa, D.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.423-424
    • /
    • 2002
  • Amount of regulated emissions (CO, $NO_x$, HC), and emissions of some groups of organic substances (volatile hydrocarbons, polyaromatics, and aldehydes) were measured in the standard ECE 83 test on spark ignition engine of a passenger car. The influence of the engine oil composition (mineral or fully synthetic) was examined. For both engine oils, exhaust emissions were measured with fresh oil as well as used oil at the end of the oil drain interval. Unleaded petrol and CNG were used as fuels in all experiments performed. The main conclusion made from the tests is that polyaromatics is the only part of th ε exhaust emissions that was influenced with the nature of the engine oil. Effect on the other components of emissions (aldehydes and VOC) was negligible. Emissions of polyaromatics were almost twice higher for fresh mineral as for fresh fully synthetic oil. The amount of polyaromatics in the exhaust emissions increased slightly with mileage for fully synthetic and substantially more for mineral engine oil.

  • PDF

자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과 (A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement)

  • 임철수;홍지형;김정수;이종태;임윤성;김상규;전상진
    • 한국대기환경학회지
    • /
    • 제27권2호
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

자동차용 환상형 소음기에 관한 실험적 연구 (An Experimental Study on Annulus Muffler of Automobile)

  • 김병삼;송규근;심상철;정병국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

도시지역 실내환경 유형별 공기질 특성 평가 -가정, 사무실 및 식당을 중심으로- (Characterization of Air Quality in Various Types of Indoor Environments in Urban Areas - Focusing on Homes, Offices, and Restaurants -)

  • 백성옥;김윤신
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.343-360
    • /
    • 1998
  • In this study, comprehensive air quality monitoring was undertaken with a variety of objectives to collect data on the levels of various indoor and ambient air quality parameters in the urban areas of Seoul and Taegu. The sampling sites were comprised of six offices, six residences and six restaurants in each city. The ambient air adjacent to the indoor sites was also simultaneously sampled for the same constituents. The sampling was conducted in two phases: summer of 1994 and winter of 1994/95. A range of air quality parameters were measured simultaneously, which include RSP, CO, COB, NOB, a range of VOC, airborne microbials, temperature, and relative humidity. The indoor and ambient levels of the pollutants measured in this study varied widely between the three types of environments studied. Comparison of median values for the three groups revealed that restaurants had higher indoor levels of most pollutants than homes or offices. There was also a clear pattern of the indoor levels of target pollutants being higher than those outdoors, particularly in restaurants. Concentrations of CO and most of the VOC were found to be significantly higher in the commercial districts, indicating the influence of vehicle exhaust emissions. A very wide range of VOC levels was documented in this study. Although median indoorloutdoor ratios indicated a generally increasing level of VOC indoors when compared to those outdoors, no statistically significant differences were found between indoor and outdoor VOC levels in homes and offices, implying the importance of ambient air quality in determining the quality of indoor air for homes and offices in urban areas. In addition, there was a general pattern of increasing concentrations from summer to winter, and similarly from outdoor to indoor air for nearly all target compounds. The seasonal differences in median levels were very clearly seen for fuel combustion related pollutants such as RSP, CO and VOC, this being attributed to the effects of increased fuel consumption during the cold season and to meteorological factors.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.