• 제목/요약/키워드: Exhaust emission

검색결과 1,072건 처리시간 0.026초

비도로용 건설기계의 오염물질 배출량 산정에 관한 연구 (A Study on the Estimation of Exhaust Emission by Nonroad Construction Equipments)

  • 정일록;엄명도;류정호;임철수
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.317-325
    • /
    • 1999
  • The demand of diesel engine on the construction equipment has been rapidly increased because of high thermal efficiency and fuel economy. The exhaust emission from nonroad vehicles equipped with diesel engine such as construction equipment, ship, and agricultural equipment, etc. Which are known to be harmful to human health and environment, has not been regulated in our country. But the regulation for nonroad vehicle has been already progressed in advanced country. So we investigated the contribution ratio of air pollution by construction equipment in order to establish the exhaust emission management strategy for nonroad vehicle. Based on the statistical data for construction equipment, 5 kinds of equipment are selected and tested in the engine dynamometer to determine the emission factor. And the amount of air pollutant from construction equipment are calculated by using of the emission factor and recommended exhaust emission standard for construction equipment.

  • PDF

함산소연료(DGM)와 EGR 방법이 디젤기관의 배기배출물에 미치는 영향에 관한 연구 (A Study on Effects of Exhaust Emissions with Oxygenated Fuel(DGM) and EGR Method in a Diesel Engine)

  • 최승훈;오영택
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1691-1698
    • /
    • 2003
  • In this paper, the combination effects of oxygen component in fuel and exhaust gas recirculation on the exhaust emissions have been investigated for a direct injection diesel engine. It is a kind of effective oxygenated fuel of diether group that the smoke emission of DGM(diethylene glycol dimethyl ether) blended fuel is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. But, NOx emission of oxygenated fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel(DGM 5vol-%) and cooled EGR method(10∼15%).

가솔린엔진의 냉시동 천이구간에서 배출가스 온도 및 유해배출물 특성에 관한 연구 (Characteristics of Exhaust Gas Temperature and Harmful Emission During Cold Start Transient Operation in an SI Engine)

  • 조용석;정대철;박영준;김득상
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1181-1187
    • /
    • 2006
  • Stringent regulations of exhaust emission from vehicles become a major issue in automotive industries. In SI engines, it is one of the crucial factor to reduce exhaust emissions during cold start in order to meet stringent regulations such as SULEV or EURO-4, because SI engines emit a large portion of total harmful exhaust compounds when they are cold. At early stages of cold start in gasoline engines, exhaust gas temperature plays a key role to improve three way catalyst by virtue of fast warmup. Therefore, this study focused on the increase of exhaust gas temperature under controls of engine operating parameters such as spark ignition timing, valve overlap by virtue of intake VVT and catalyst heating function. Furthermore, effects on harmful emission due to these parameters are also investigated. Experiments showed that retarded spark ignition timings and increased valve overlap may be helpful to increase exhaust gas temperature. It was also found that $NO_x$ was decreased with increased valve overlap. This study also showed that sudden changes in ISA and amount of fuel due to the deactivation of catalyst heating function cause temporal increase of harmful emissions.

CHARACTERISTICS OF PERFORMANCE AND EXHAUST EMISSION OF DIESEL ENGINES BY CHANGES IN FUEL PROPERTIES AND APPLICATION OF EGR

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.179-184
    • /
    • 2007
  • In this study, the potential use of oxygenated fuels such as ethylene glycol mono-normal butyl ether (EGBE) was investigated in an attempt to reduce the emission of exhaust smoke from diesel engines. Effects of the combustion method on exhaust emission of DI and IDI diesel engines were also examined. Since EGBE is composed of approximately 27.1% oxygen, this is one of several potential oxygenated fuels that could reduce the smoke content of exhaust gas. EGBE blended fuels have been proven to reduce smoke emission remarkably compared to the conventional commercial fuels. The test was conducted with single and four cylinder, four stroke, DI and IDI diesel engines. The study showed that a simultaneous reduction of smoke and NOx emission could be achieved by the combination of oxygenated blend fuels and the cooled EGR method in both DI and IDI diesel engines. It was also found that a reduction rate of exhaust emission in a DI engine was larger than an IDI diesel engine.

배기관 내 압력 변동 분석에 의한 가솔린 기관의 실화 검출 (Misfire Detection of a Gasoline Engine by Analysis of the Variation of Pressure in the Exhaust Manifold)

  • 심국상;복중혁;김세웅
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.1-8
    • /
    • 1999
  • This paper describes the method for detection of the misfired cylinder by analysis of the variation of pressure occurred in exhaust manifold on an MPI gasoline engine. Misfired cylinder(s) cause a loss of power, an increase of fuel consumption and exhaust emission and vibration is caused by unsteady torque. Therefore early detection and correction of misfired cylinder(s) play a very important role in the proper performance and the exhaust emission. The method is a comparison of integration pressure index during the period of a blowdown in the displacement period. Experimental results showed that the method, using the variation of pressure in the exhaust manifold is proven to be effective in the detection of single cylinder or multiple cylinders misfire on the gasoline engine regardless of the engine revolutions. In addition, this method, using the variation of pressure in the exhaust manifold is a very easy and accurate method compared with other methods.

  • PDF

수출입컨테이너화물의 연안운송에 의한 이산화탄소($CO_2$)와 질소산화물(NOx) 배출량 삭감에 관한 연구 (Study on the reduction of $CO_2$ and NOx emission by coastal transport of import-export container cargo)

  • 김상현;고창두;조용진;반석호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권4호
    • /
    • pp.42-50
    • /
    • 2001
  • 본 논문에서는 수출입컨테이너 화물의 육상운송에서 연안운송으로의 전환을 이용한 CO₂가스 및 배기가스 배출량 삭감이 제안되어진다. 먼저 국내의 CO₂가스 배출량, 배기가스 배출량, 수출입컨테이너화물의 물동량 등에 대하여 간단히 살펴본다. 또한 경인지역과 부산항사이의 수출입컨테이너화물 수송에 대하여 육상운송에서 연안운송으로의 변환에 의한 CO₂가스 및 배기가스 배출량 삭감효과에 대하여 고찰한다. 마지막으로 연안운송의 분담율 변화와 320TEU 소형컨테이너선 이용에 따른 NOx가스 배출량 변화를 고찰한다. 본 연구의 결과 육상운송에서 연안운송으로의 전환이 CO₂가스 및 배기가스 배출량 삭감에 효과적인 것을 확인하였다.

  • PDF

직접 분사식 디젤기관에서 Dimethoxy Methane과 Cooled EGR방법을 이용한 Smoke와 NOx의 동시저감 (Simultaneous Reduction of Smoke and NOx by Dimethoxy Methane and Cooled EGR Method in a DI Diesel Engine)

  • 최승훈;오영택;권규식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.66-72
    • /
    • 2004
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself, and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method(1015%).

직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성 (The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine)

  • 이기형;류재덕;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

직접분사식 디젤기관에서 EGR 적용시의 배기배출특성에 관한 연구 (A Study on the Exhaust Emission Characteristics with EGR Application in a DI Diesel Engine)

  • 최승훈;오영택;권규식
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.10-14
    • /
    • 2005
  • The Effects of cooled and hot EGR(exhaust gas recirculation) on the characteristics of smoke and NOx emission have been investigated using a single cylinder, water-cooled, four cycle, DI diesel engine at several loads and speeds. In this study, a manually controlled EGR system was installed on a agricultural diesel engine which was operated at various operating system. And, the effects of hot EGR and cooled EGR on smoke and NOx emission were compared. The results showed that cooled EGR method was more effective than hot EGR method on smoke and NOx emission.

  • PDF

EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성 (Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation)

  • 조윤호;구준모;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.