• 제목/요약/키워드: Exhaust System

검색결과 1,701건 처리시간 0.028초

스팀터빈 Exhaust System에서 LP터빈과 Exhaust Hood 사이의 간섭에 대한 수치해석적 연구 (Numerical investigation of LP turbine-exhaust hood interaction in the steam turbine exhaust system)

  • 임지현;주원구;김영상;임홍식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.291-294
    • /
    • 2006
  • Exhaust system of steam turbines consists of an annular diffuser and a collector and connects the last stage turbine and the condenser. The system is used to transfer the turbine leaving kinetic energy to potential energy while guiding the flow from turbine exit plane to the downstream condenser. In the steam turbine exhaust system, distorted pressure profile is arisen by the nonaxisymmetric collector structure at the diffuser outlet, and this distorted pressure is propagated to the last stage LP turbine exit plane through the diffuser, then the last stage LP turbine experiences asymmetric back pressure. It is known that the pressure recovery performance of diffuser is strongly influenced by diffuser inflow condition. In this study, the effect of exhaust system due to the changing of inlet flow condition is observed by using CFD, and the interaction of last stage LP turbine and exhaust system is investigated by using actuator disk model as modeling of turbine blade row of exhaust hood inlet.

  • PDF

엔진 배기계의 배기가스 누설 메카니즘과 설계인자들의 영향에 관한 연구 (A Study on the Effects of the Design Parameters and Sealing Mechanism of the Exhaust Gas in Engine Exhaust System)

  • 최복록
    • 동력기계공학회지
    • /
    • 제14권4호
    • /
    • pp.37-42
    • /
    • 2010
  • This paper deals with the sealing mechanism of the gasket component and the effects of design parameters for the exhaust manifold. The finite element model includes hot-end exhaust system and a simplified gasket model supplied by ABAQUS software. The mechanical behaviors of bead and body of a gasket are measured after several times of cyclic loads by gasket supplier. From the finite element analysis due to the cyclic thermal loads, the flange of exhaust manifold shows thermal expansion and contraction in longitudinal direction as well as convex and concave deformations with respect to the engine cylinder head. And, the contact pressures of the gasket beads suddenly changes by normal deformation of inlet flanges. Therefore, the magnitudes of contact pressures could be used to determine the sealing characteristics of the exhaust gas in the exhaust system. The distributions of contact pressures in gasket bead lines shows a good agreement with the engine test results.

자동차 배기계에 대한 음질 향상 (Improving Sound Quality of the Exhaust System Using Convolution Analysis)

  • Yunseon Ryu;Kim, Yoon-Seok
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1148-1150
    • /
    • 2002
  • The exhaust system could be a dominant acoustical source in the passengers vehicle. It would be very important to obtain the acoustically good exhaust system, in order to control the cabin interior sound in automotive. In order to obtain the acoustically good exhaust system in automotive, many kinds of exhaust system should be measured, and simultaneously those results should be compared by the sound quality parameters. In this paper, in order to develop the methodology determining sound quality parameters, acoustic simulator is introduced, combining the time domain analysis and convolution analysis. As an example to verify the reliability of this method, several kinds of measurements are carried out, and the acoustically good exhaust system is selected, based on this proposed method.

  • PDF

배기시스템 구성요소가 SI기관의 연소특성에 미치는 영향 (The effect of exhaust system components on combustion characteristics of SI engine)

  • 박경석;박세종;최석렬;손성만
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile, environmental problem as designing the exhaust system. Increasingly strict environmental regulations to lower fuel consumption and reduce emission. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency and combustion charateristics influenced by back pressure. This study furnish basic data for engineers, technicians.

배기구성요소가 SI기관의 성능에 미치는 영향 (The Effect of Exhaust System Components on the Sl Engine Performance)

  • 박경석;박세종;손성만
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.192-198
    • /
    • 2005
  • Recently, Automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile. This reason is increasingly strict environmental regulations to lower fuel consumption and reduce emission. Designing more efficient and low emission control exhaust system results in more efficient Performance, reduced back Pressure and higher convert efficiency. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate, higher conversion efficiency demand information of pressure fraction and heat characteristics. To be able to determine these factor fur we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency, lower back pressure and optimal performance. This study furnish basic data for engineers, technicians.

Modal Testing을 이용한 자동차 배기계의 유한요소 모델 검증 (Verification of the Finite Element Model of an Automotive Exhaust System Using Modal Testing)

  • 조민호;정해일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.665-670
    • /
    • 2001
  • The purpose of this paper is to verify a finite element model of an automotive exhaust system using Modal testing. In general, a lot of finite element models are used in initial design step of automotive development. One of them is a finite element model of an exhaust system. Verification on the finite element model of an automotive exhaust system is indispensable. In this paper, a finite element analysis on the exhaust system using MSC/NASTRAN is carried out, and the results are compared with those obtained by modal testing. By comparing MAC values of the analytical modes with the experimental modes, the finite element model of the automotive exhaust system is verified.

  • PDF

스크러버 연계 배기가스 배출제어용 3방향 댐퍼밸브의 구조 안전성 평가 (Structural Safety Evaluation of a 3-way Damper Valve for Scrubber-linked Exhaust Gas Control)

  • 김영훈
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1007-1014
    • /
    • 2020
  • IMO(International Maritime Organization) continues to strengthen environmental regulations on exhaust gases such as CO2, NOx, SOx. As for sulfur oxides, from 1 January 2020, all ships on international voyages must use fuel with a sulfur content of 0.5% or less. Or, it is obligatory to use an exhaust gas treatment device that has the same effect. Shipping companies are using low-sulfur oil, replacing them with LNG fuel, or installing scrubbers that suppress sulfur oxide emissions. In the case of ships using bunker C oil, the load on the engine is lower when entering and departing, so the exhaust gas pressure is lowered and the scrubber cannot be properly utilized. Therefore, diesel oil with low sulfur content is used when entering and leaving the coast. When diesel oil is used, exhaust gas is directly discharged through the control system and piping system, and when bunker C oil is used, sulfur oxides are reduced by scrubbers through other control systems and piping systems to discharge exhaust gas. Accordingly, a company has developed a system called a three-way damper valve that can control exhaust gas emissions while integrating these two control systems and piping systems into one. In this study, the control characteristics of the integrated exhaust gas control system and structural safety against external loads in a high-temperature exhaust gas environment were reviewed.

3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구 (Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis)

  • 진봉용;이상호;조남효
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Test System Design for Turbofan Engine Exhaust Infrared Signature Reduction Study

  • Jo, Hana;Kim, Jaewon;Jin, Juneyub
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.85-90
    • /
    • 2020
  • The infrared signature that is associated with an aircraft is mainly caused by heat released from the engine and the exhaust plume. In this study, a test-system was designed to observe the overall infrared signature characteristics of a turbofan engine during operation under ground running conditions and the infrared reduction features that result from different exhaust nozzle configurations. A test stand was designed for the 1400 lbf class turbofan engine that included a bell-mouth type intake, fuel supply system, a measurement system, and a data acquisition/control system. The design and verification of the test system were conducted so that the basic nozzle and various 2D nozzles could be applied to study the infrared signature produced by a turbofan engine exhaust.

도로터널 반횡류식 환기방식의 최적배연 풍량산정에 관한 연구 - 균일배기의 경우 - (A Study on the Effective Smoke Exhaust Amount of Load-Tunnel with Semi-Transverse Ventilation - Balanced Exhaust Case -)

  • 이동호;유지오;신현준
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.46-51
    • /
    • 2006
  • The smoke exhaust system is one of the effective systems to save lives when fire occurs underground. This study presents a complete analysis of effective smoke exhaust and smoke characteristics for a fire occurring with a transverse ventilation system use as a smoke exhaust system. The performance of the smoke management system was studied by computer modeling using FDS version 3.1. A fire size of 20MW was used for tunnel with balanced exhaust transverse ventilation. The smoke management design and the procedure as simulated in this study are also compliant to the tunnel construction and fire codes of Korea.