• Title/Summary/Keyword: Exhaust Heat

Search Result 739, Processing Time 0.03 seconds

A Simulation Study for Selecting Optimum Position of a Superheater in a Waste Heat Recovery System Integrated with a Large Gasoline Engine (대형 가솔린 엔진의 폐열 회수 장치인 슈퍼히터의 최적 위치선정을 위한 시뮬레이션 연구)

  • Kim, Se Lin;Choi, Kyung Wook;Lee, Ki Hyung;Kim, Ki Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • Recently, automotive engineers have paid much attention to waste heat recovery technology as a possible means to improve the thermal efficiency of an automotive engine. A large displacement gasoline engine is generally a V-type engine. It is not cost effective to install two superheaters at each exhaust manifold for the heat recovery purposes. A single superheater could be installed as close to the exhaust manifold as possible for the higher recovery efficiency; however, only half of exhaust gas can be used for heat recovery. On the contrary, the exhaust temperature is decreased for the case where the superheater is installed at a junction of two exhaust tail pipes. With the fact in mind, the optimum position of a single superheater was investigated using simulation models developed from a commercial software package (i.e. AMESim). It was found that installing the superheater near the exhaust manifold could recover 3.8 kW more from the engine exhaust despite utilizing only half of the exhaust mass flow. Based on this result, the optimum layout of an automotive waste heat recovery system was developed and proposed in this paper.

Numerical Analysis on Energy Consumption of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지소비 수치해석)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Kim, Hyoung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1306-1311
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from the outdoor air introduced into clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is therefore useful for reducing the outdoor air conditioning load for a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. In the present study, numerical analysis and experiment was conducted to simulate the amount of energy reduction of exhaust air heat recovery type air washer system. The present numerical results showed good agreement with the results of the experimental data.

  • PDF

A Study on the Ventilation Performance Estimation of Marketing Ventilation Fan Used in the Apartment House Kitchen (공동주택의 주방에서 사용되는 시판 환풍기의 환기 성능 평가에 관한 연구)

  • 송필동;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.315-320
    • /
    • 2002
  • Marketing ventilation fan 3 kinds been using in kitchen of apartment house into compensation discharge performance of contaminant measure. When propane gas burns by gas table, did waste heat into measurement compensation with carbon dioxide that it happens. In measured all type of exhaust fan, discharge performance of carbon dioxide and waste heat was high there are been much displacement. Among A, B, C three types, performance of A type exhaust fan was most superior and performance of C type exhaust fan was most poor

  • PDF

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.

Flow and Heat Transfer Analysis for the Ventilating System in Automobile Interior with a Forced Exhaust (강제배기를 수반한 자동차 실내의 환기시스템에 대한 유동 및 열전달 해석)

  • Lee Sang-Ho;Moh Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.469-476
    • /
    • 2005
  • Numerical modeling has been carried out to investigate the two-dimensional air flow in automobile interior with a forced exhaust close to main air inlet for typical ventilation modes. The characteristics such as streamlines and temperature fields in the passenger compartment room with the forced exhaust are analyzed with comparison of the cases without a forced exhaust. The simulation results show that air flow on the floor near the front seat is increased with the forced exhaust for all ventilation modes. Flow recirculation in the cabin is most active in mode 2 with a vertical suction inlet in comparison with other two modes. In particular, less time is taken for air temperature to reach the inlet temperature due to the forced exhaust for the ventilation modes. Finally, it could be predicted that ventilating air flow is much improved with the forced exhaust in the interior Modeling results in this study can be applied to the optimal design of automobile interior fur air ventilation system.

Conceptual Design of Turbine Exhaust System for 3rd stage of Launch Vehicle (한국형발사체 3단 터빈배기부 개념설계)

  • Shin, DongSun;Kim, KyungSeok;Han, SangYeop;Bang, JeongSuk;Kim, HyenWoong;Jo, DongHyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1068-1071
    • /
    • 2017
  • The turbine exhaust system consists of a turbine flange, heat exchanger, exhaust duct and thrust nozzle. Heat exchanger is used for the launch vehicle because of the advantage of reducing the weight of the helium gas and the storage tank by using the heat exchanger pressurization method compared to the cold gas pressurizing method. Since the gas generator is combusted in fuel-rich condition, the soot is contained in the combustion gas. Hence, the heat exchanger should be designed considering the reduction of the heat exchange efficiency due to the soot effect. In addition, the uncertainty of the heat exchange calculation and the evaluation of the influence of the combustion gas soot on the heat exchange can not be completely calculated, so the design requirements must include a structure that can guarantee and control the temperature of the heat exchanger outlet. In this paper, it is described that the component allocation, the design method considering the manufacture of internal structure, the advantages of new concept of nozzle design.

  • PDF

Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy (해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사)

  • 최광일;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

DEVELOPMENT OF HIGH EFFICIENCY COGENERATION SYSTEM USING BIOGAS FOR THE LOWER POLLUTION OF THE ENVIRONMENTAL

  • Park, J.S.;Ishii, K.;Terao, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.670-675
    • /
    • 2000
  • The purpose of the study is development and investigation about basic performance of the system operation on a dual fueled cogeneration system(CGS), which is operated with biogas and gas oil. As often seen in dual fueled CGS performance, the electric generating efficiency was obtained about 26□. Methane contained in the biogas could not bum completely at lower load, and it was discharged into exhaust gas. Considerable amount of the methane burned in the exhaust pipe, and the heat recovery ratio was 42□ on heat balance. As a result, the total heat efficiency, which is a summation of generating efficiency and heat recovery efficiency reached to about 70□. The supply of biogas into the engine reduces smoke density and NOx concentration in exhaust gas. At lower load, methane burned slowly and large portion of it was discharged without burning. Therefore the measures are desirable that promotes combustion of methane at lower load.

  • PDF

Cooling Performance of a Notebook PC Mounted with Heat Spreader (히트 스프레더가 사용된 노트북 PC의 냉각성능에 관한 수치적 연구)

  • No, Hong-Gu;Im, Gyeong-Bin;Park, Man-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.766-775
    • /
    • 2001
  • Parametric study to investigate the cooling performance of a notebook PC mounted with heat spreader has been numerically performed. Two cases of air-blowing and air-exhaust at inlet were tested. The cooling effect on parameters such as, inlet velocities in the cases of air-blowing and air-exhaust, materials of heat spreader, and CPU powers were simulated for two cases. Cooling performance in the case of air-blowing was better than the case of air-exhaust.

Estimation on locations of air-supply and exhaust ports in the nacelle of wind turbine (풍력터빈 나셀 냉각시스템의 급.배기 위치 평가)

  • Woo, S.W.;Kim, H.T.;Lee, J.H.;Lee, K.H.;Park, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.240-242
    • /
    • 2011
  • Wind power system is generally divided into the onshore wind turbine and the offshore wind turbine according to site locations. The offshore wind turbine is manufactured as a closed nacelle cooling system including a heat exchanger to prevent corrosion, but the onshore wind turbine is manufactured as open nacelle cooling system dependent on only the outdoor air without a heat exchanger. The indoor of a nacelle which is composed of a generator, foil power converters and a gearbox with a lot of heat is very narrow and airtight. This aim of the study is to demonstrate the temperature effect depending on positions of air-supply and exhaust ports. And this study discusses the flow field and removal efficiency of heat caused by components.

  • PDF