• Title/Summary/Keyword: Exhaust Gas Characteristic

Search Result 106, Processing Time 0.025 seconds

The effects of gas flow in intake and exhaust system on volumetric efficiency (흡배기계의 가스유동이 체적효율에 미치는 영향)

  • 조진호;김병수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.57-65
    • /
    • 1988
  • The study of unsteady gas exchange processes in the intake and exhaust systems of four-cylinder, four-stroke cycle internal combustion engine is described in this paper. The calculation model for the intake and exhaust systems is established and solved by the characteristic method for the equations defining these systems. A constant pressure theory is used for modeling branches of intake and exhaust manifolds. The relationship between the volumetric efficiency and the intake, exhaust pressure variation is clarified by simulation of these systems. It is found that the volumetric efficiency mainly depends on the intake pressure during the short period before the intake valves is closed, that the volumetric efficiency is influenced a little by intake chamber volume in the intake and exhaust system.

  • PDF

Improvement of algorithm for the calculation of gas flowin intake and exhaust system on diesel engines (내연기관의 흡.배기계내 가스유동해석용 알고리즘의 고정도화)

  • K.Kanamaru
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2001
  • Many simulation programs included intake and exhaust system on diesel engines have been developed. However, existing programs using 1-D numerical analytic methods in manifold gas flow by the method of characteristics have some problems to be solved.. Especially to optimzing the engine system, a simulation program which had more efficiency and accuracy is required newly. In this paper, a improved method for application limit and efficiency as well as mass conservation named constant mesh explicit method of characteristic was described. And some calculation results by this method were compared with experimental results and orther calculation results. Also, it was confirmed that the results by the proposed method were more agreed with experimental results.

  • PDF

A study on power improvement emission characteristics of marine diesel engine with response power 200HP turbocharger (대응출력 200마력 과급기에 의한 디젤기관의 출력향상 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • To improve efficiency of diesel engine which requests high output recently and is used all kinds of industrial areas, this thesis experimented dynamic characteristics and exhaust gas characteristics of diesel engine installed by supercharger of correspondent output 200HP and natural inhalation diesel engine through the dynamometer and exhaust gas analyzer in same condition. As the result of experiment with natural inhalation diesel engine and diesel engine installed by supercharger, there were a few differences of output, but dynamic characteristics at high speed showed increased output and efficiency of the engine installed by supercharger. On the contrary, in exhaust gas characteristics, the model installed by supercharger showed increased exhaust gas such as $NO_X$, $O_2$, etc, but added value of exhaust gas is low if considering $CO_2$ reduction and efficiency of dynamic characteristic's increase. Based on the results, diesel engine installed by supercharger is expected to show higher economic feasibility than natural inhalation diesel than natural inhalation engine from an angle of efficiency. Keywords: 200hp class Turbocharger, Exhaust Gas, Engine Performance, Marine Diesel Engine.

A Study on the Combustion Flow Characteristic and NOx Reduction of the Exhaust Gas Recurculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 연소 유동 특성 및 NOx 저감에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.53-60
    • /
    • 2017
  • Various researches have been conducted for the reduction of NOx at the combustion furnace and exhaust gas recirculation method is commonly used technology for NOx reduction. The present research adopted coanda nozzles at the outside pipes of furnace to entrain the exhaust gas for the exhaust gas recirculation and the mixed gas was ejected to the tangential direction to cause the swirl flow in the furnace. The combustion flow characteristics in the exhaust gas recirculation burner with coanda nozzle has been elucidated by analyzing the swirl flow streamlines, temepraure and reaction rate distribution in the furnace. The exhaust gas entrained flow rate has been investigated by changing the excess air factor and coanda nozzle gap and the exhaust gas entrained flow rate increased with the increase of excess air factor and it decreased with the increase of coanda nozzle gap. The mean temperature at the exit plane of exhaust gas decreased with the excess air factor and it was little affected by the increase of coanda nozzle gap. The NOx mass fraction at the exhaust gas exit plane remarkably decreased with the excess air factor and it was also little affected by the increase of coanda nozzle gap.

Development of Grain Heater Using Engine Exhaust Gas (내연기관(內燃機關) 배기(排氣)가스를 이용(利用)한 곡물가열기(穀物加熱機) 개발(開發))

  • Suh, S.R.;Harris, F.D.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 1985
  • A double pipe grain heater using engine exhaust gas as a heat source was developed. The performance of the grain heater was examined with soybeans as a test material experimentally and numerically using a mathematical model constructed. The following conclusions were drawn: 1. The modified screw conveyor used in the grain heater has a characteristic of decreasing capacity with increasing speed at speeds above 60 rpm. Operation with speeds below 60 rpm is recommended. 2. Heating soybeans by the heater at soybean flow rate up to 100 kg/hr, inlet temperature of the exhaust gas to the heater are recommended as above $400^{\circ}C$, $300^{\circ}C$, and $200^{\circ}C$ roughly for a 2, 5, and 10 kW engine, respectively. 3. Temperature increments of soybean by the heater at soybean flow rates ranged from 25 to 100 kg/hr are in the ranges of $6^{\circ}C-35^{\circ}C$, $15^{\circ}C-88^{\circ}C$, and $15^{\circ}C-140^{\circ}C$ with exhaust gas from a 2, 5, and 10 kW engine, respectively, at an exhaust temperature of $500^{\circ}C$. 4. Thermal efficiency of the heater at soybean flow rates ranged from 25 to 100 kg/hr are in the ranges of 35-37%, 28-34%, and 20-29% with exhaust gas from a 2, 5, and 10 kW engine, respectively. 5. The grain heater can be used to heat the other grain, also, without any bad effect from the exhaust gas used as a heat source.

  • PDF

A Study on the Gas Exchange Characteristics of Intake and Exhaust Systems in the Gasoline Engine (가솔린 기관 흡.배기계의 가스 유동 특성에 관한 연구)

  • 서영호;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.112-119
    • /
    • 1994
  • This study is investigated into the dynamic effect of the manifold configuration during the gas exchange processes using both simulation and experiment, In theoretical study on the flow analysis, the characteristic method is applied to solve the compressible unsteady flow equation, involving the several steady flow boundary conditions. In order to excute the engine experiment efficiently, a data acquisition system is configured by using A/D converter and PC. Good results which coincided experimental data with simulation output were obtained, and it shows that this simulation method can be applied to obtain the optimal design parameters in the intake and exhaust systems.

  • PDF

Development of Fast-Response CO2 Analyzer and Analysis of Engine-out Emission during Cold Start of SI Engine (고속응답 CO2 분석기의 제작 및 이를 이용한 SI엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Park, Kyoung-Seok;Park, Dong-Sun;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • A fast-response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of a SI engine. The analyzer consists of the non-dispersive infrared absorption method, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it showed 18ms of a response to measure the $CO_2$ concentration. The fast-response $CO_2$ analyzer was applied to a single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for confirming the accuracy of the exhaust gas analysis using the fast-response $CO_2$ analyzer. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated from the $CO_2$ concentration of engine-out emissions and engine operating variables.

A Study on the Effect of Exhaust System Configuration on Scavenging Characteristic of a Four-Cylinder Turbocharged Diesel Engine (배기계 형상이 과급기를 장착한 4실린더 디젤엔진의 소기성능에 미치는 영향에 관한 연구)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Woo;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.35-43
    • /
    • 2006
  • A four-stroke four-cylinder turbocharged diesel engine can be fitted with various types exhaust system. In this paper, the impacts of exhaust system design on scavenging performance and wave action characteristic during valve overlap are investigated by using one-dimensional gas dynamic code. This work shows that a huge reflected exhaust pressure waves which reaches the exhaust port during valve overlap period is crucial design factor which determines quality and quantity of the fresh charge. Hence pressure wave that reaches the exhaust port of the cylinder during the valve overlap sequence should be weakened for good scavenging performance. This paper describes advantages and disadvantages of the various exhaust systems applied to a turbocharged and intercooled 4-cylinder diesel engine system in terms of scavenging efficiency and engine performance. To verify the computational results, experimental comparison has also performed.

Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine (다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측)

  • 이병해;이재철;송준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF

A Exhaust Gas Study by EGR in Heavy-Duty Diesel Engine (대형디젤기관에서 EGR에 의한 배출가스 연구)

  • 한영출;류정호;오용석;이현우;강호인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.285-291
    • /
    • 2000
  • EGR(Exhaust Gas Recirculation) is known as the technique reducing the NOx emissions from diesel engine. Low pressure roote and high pressure roote are applied for heavy-duty diesel engine are. In this study, as research for the heavy duty diesel engine equipped with EGR, reduction characteristic of CO, THC, NOx, and PM in HD diesel engines are investigated by applying EGR device. Also, through the experiments using 11 liters, turbocharged diesel engine with EGR valve and intercooler, exhaust gas reduction characteristics were measured as changing in EGR rate according to D-13 mode.

  • PDF