• Title/Summary/Keyword: Exhaust System

Search Result 1,694, Processing Time 0.028 seconds

Analysis and Development for Installation Safety Standard on Gas Boiler Exhaust System (가스보일러 배기시스템 설치 기준 분석 및 개발 (가스보일러 배기시스템 관련 설치 안전기준 개발II))

  • Lee, Soo-jeong;Choi, Kyoung suhk;Chae, Chung-keun;Kim, Ha na;Yun, Jin sun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.111-112
    • /
    • 2014
  • Exhaust gas boiler system with respect to national and international safety standards, comparative study best suited to the realities of local exhaust and exhaust system manufacturing, certification standards and gas boiler installation, management, and mip draft inspection standards will proceed through this study.

  • PDF

A Study on the Expansion Cavity Pipe for Performance Improvement of Exhaust System in Automotive (자동차 배기성능개선을 위한 확장형 공동파이프에 관한 연구)

  • Son, Sung-Man;Park, Kyoung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • The temperature of exhaust gas was raised by increasing of engine movement on developing engine. Thermal of high temperature and pressure reverse in bellows, because of increasing of engine movement and the thermal performance of converter in combustion. As a result, thermal loss is increased and thermal efficiency is decreased rapidly in bellows, it can occur to damage in mechanical structure. In this study, it was necessary to analyze back pressure performance and thermal characteristic on driving condition in exhaust system. It was adapted braid type bellows and straight type exhaust pipe. It was compared with curve type exhaust pipe for lay-out on considering to design of exhaust system. It was necessary to improve thermal characteristic and back pressure performance so that expansion cavity pipe(ECP) was installed between bellows and catalyst convert. Not only decreasing back pressure was solved but also thermal characteristic problems in exhaust pipe because of increasing capacity. According to this study, the basis of data is presented when new exhaust system is designed.

Performance of Local Exhaust Ventilation Systems of Degreasing and Plating Workplaces (일부 탈지세척 및 도금공정 국소배기장치의 성능점검과 개선방안)

  • Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.178-185
    • /
    • 1998
  • In order to evaluate and improve the performance of local exhaust ventilation systems for two TCE degreasing (A, B) and two electroplating (C, E) and one acid dipping & plating (D) operations located in Kimhae, the performance test was conducted with trace gases and a thermal anemometer (Kanomax 24-6111, Japan). For the inadequately designed systems, the improvement and redesigns in compliance with recommendation by ACGIH was suggested. The results of performance test for each system are as follows; 1. System of Workplace A was generally well-designed. Actual exhaust air flow rate was in excess of 68% above the recommended standard exhaust air flow rate. 2. System of Workplace B was very well-designed and completely enclosed. 3. All systems of Workplace C including hoods were poorly-designed and actual exhaust air flow rates were insufficient for open tanks. All systems should be upgraded according to ACGIH recommendations. 4. Supply and exhaust air flow rate of push-pull exhaust systems in Workplace D should be greatly increased. The width of flange of dipping tank hood should be increased with the value suggested. 5. System of Workplace E was well-designed. Actual exhaust air flow rate was in excess of 54% above the required.

  • PDF

A Study on the Effect of Recirculated Exhaust Gas upon Exhaust Emissions of Boiler with a FGR System (FGR 시스템 보일러의 배기 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Jung, Kwang-Ho;Cho, Yong-Soo;Bae, Myung-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.405-415
    • /
    • 2007
  • The effects of recirculated exhaust gas on exhaust emissions under four kinds of nozzle tip with the different fuel consumption rates are experimentally investigated by using an once-through boiler with a FGR system. The purpose of this study is to develop the FGR control system for reducing $NO_x$ emissions in boilers. Intake and exhaust oxygen concentrations, and equivalence ratio are considered to figure out the effect of FGR rate on exhaust emissions at various fuel consumption rates. It is found that $NO_x$ emissions are markedly decreased, while soot emissions are increased owing to the drop of intake and exhaust oxygen concentrations, and the rise of equivalence ratio as FGR rates are elevated. One can also conclude that the reduction in $NO_x$ emissions is more considerably influenced by the variation of equivalence ratio due to the FGR rate than the fuel consumption rate.

Influence of Back Pressure of an Exhaust System on Quietness at Low-Speed Rotation (저속 회전 시 배기시스템의 배압이 정숙성에 미치는 영향)

  • Kang, Il-Seok;Yang, Sung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.69-75
    • /
    • 2019
  • In recent years, the driving performance and exhaust sound quality in automobiles have been recognized as important factors, as they maximize the driving fun to fulfil the demands of customers. Therefore, many automobile manufacturers are studying various exhaust pipe shapes to improve sound quality and optimize exhaust pressure. The objective of the exhaust pipe design is to maximize the engine efficiency using optimal exhaust pressure settings. In this study, an exhaust system was fabricated with different junction shapes, and the results were analyzed through various experiments. The exhaust gas pressure acting inside the exhaust pipe was measured using a pressure transducer. Meanwhile, the vibration generated in the vehicle was measured in three axial directions and analyzed. The ground noise generated in the indoor and outdoor of the vehicle was measured, and the noise generated at the maximum output was measured and analyzed.

A Study on the Reduction of HC and Heat Characteristics of the Dual Pipe Exhaust Manifold (이중관 배기메니폴드의 HC저감효과 및 열특성에 관한 연구)

  • 박경석;허형석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.103-111
    • /
    • 2001
  • During cold-start period, the reduction of exhaust emissions is a challenging task. To decrease harmful gaseous substances such as HC, it is necessary to realize a fast catalyst warm-up. In this study, the performance of dual pipe exhaust system have been carried out through different test mode. From measurement of gas temperature and HC concentration, the following conclusions were derived ; 1) Compared with single pipe, dual pipe exhaust system remarkably increase temperature of exhaust gas going through M.C.C(Main Catalytic Converter). 2) W.C.C.(Warm-up Catalytic Converter) also decreases HC emission. To reduce HC emission, it is helpful to use W.C.C. as well as dual pipe exhaust system. 3) Using finite element method, it is shown that inner parts have much higher distribution of temperature than outer parts.

  • PDF

The influence of exhaust system on heat efficiency and fuel consumption of S.I engine (엔진운전조건에 따른 배기시스템의 압력분포특성에 관한 연구)

  • 김동현;박세종;손성만;박경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1091-1096
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile. The need for stricter regulation limits emission and demand for lower fuel comsumption. According to motor vehicle company develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption for demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, in order to establish the optimized conditions design factors which are taking many performance as the variable valve, it shows how the standard performance and the additional element of the exhaust system effects on the engine performance.

  • PDF

A Study on the Evaluation of Engine Motion for the Design in Automobile Exhaust System (자동차 배기계 설계를 위한 엔진운동변위 산출에 관한 연구)

  • 이완익;박경진;이권희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • In the analysis of automobile exhaust system, the exciting forces from the engine determine the dynamic behavior of the system and the dynamic characteristics influence the riding quality. Therefore, the identification of the force in numeric value is quite important for the vibrational reduction. However, the value is difficult to obtain by experiments due to harsh conditions around the engine. In this research, an optimization technology is adopted to evaluate the exciting forces. An experimental method is conducted for the verification of the finite element modeling. Displacements on the end of the exhaust system are measured under the idling environment. cost function is set up to minimize the differences between the displacements of the numerical simulation and the experiment. Design variables are the components of the exciting forces. That is, optimization is utilized to estimate the forces with existing data. Excellent estimations have been calculated efficiently and the information is used again for the forced vibration of the exhaust system.

  • PDF

A Study of Smoke Exhaust Rate for the Transverse Ventilation with Oversized Exhaust Ports in Road Tunnel (횡류식 대배기구 방식을 적용한 도로터널에서 화재시 최적배연풍량 선정에 관한 연구)

  • Yoo, Ji-Oh;Yoon, Sung-Wook;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.7-12
    • /
    • 2006
  • Recently, the application of transverse ventilation system with oversized exhaust ports has been increased in bidirectional road tunnel in order to improve smoke exhaust ability. Therefore, in this study, for decision of the optimal smoke exhaust rates in the transverse ventilation system, several standards of nations are compared and numerical simulations with variations of exhaust flow rates are carried out in terms of smoke spread distance by FDS ver. 3.1. As results, in the case of no internal longitudinal air velocity in tunnel, the smoke exhaust rate of $80m^{3}/s$ (the smoke generation rate at HRR of 20MW) is sufficient enough to limit the smoke spread within 250m in 6 minutes after the fire. However, in the case of the internal longitudinal air velocity at 2.5m/s, the smoke exhaust rate should be increased $130m^{3}/s$.

THC Reduction through the Improvement of Exhaust System (배기계 형상 개선을 통한 THC 저감에 관한 연구)

  • 김기성;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2000
  • Experimental studies were performed to understand the flow characteristics in the exhaust system and improve the THC emission characteristics by optimizing the flow in the exhaust manifold and CCC in a SI engine. For this purpose, the flow characteristics in the exhaust systems with two types of exhaust manifolds(STD and New Type) were measured by using LDV technique under various engine condition. It was found that the flow characteristics in the New Type exhaust manifold was more desirable in a view point of heat loss reduction from the exhaust gases. The vehicle emission tests showed that the THC emission in the New Type exhaust manifold was decreased by 12%.

  • PDF