• Title/Summary/Keyword: Exhaust

Search Result 3,815, Processing Time 0.025 seconds

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Effect of Thermophilic Ammonium Tolerant Bacteria on Malodors Emission of Composting of Pig Manure (돈분 퇴비화 과정중 악취물질에 대한 고온성 암모니움 내성균 접종 효과)

  • Seo, Myung-Chul;Kuroda, Kazutaka;Hanajima, Dai;Haga, Kiyonori
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In order to investigate microbiological control of malodors, particularly including ammonia, the effect of three thermophilic ammonium tolerant bacteria strains. TAT112. TAT117 and TAT119, were tested during composting of pig manure in the laboratory scale composters. The total weight, volatile solids and BOD of the pig manure compost were decreased during composting process in all treatments. The temperature in all treatments rose in first 3 days dramatically, but that in control without inoculation reached its maximum most lately among the treatments. The nitrogen content of drain water accumulated inside and outside composter, and trapped in 6N $H_2SO_4$ was lower in TAT112 inoculated composter than in control. However, it was not lower in the treatment of TAT117 and TAT119 inoculated. Ammonia concentration in the exhaust gas monitored everyday during composting also demonstrated that it was lowest at TAT112 inoculated among all treatments. It was appeared to have an effect on reducing ammonia emission at the treatment of TAT112 inoculated than the control.

  • PDF

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method (CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구)

  • Whang, Dae-jung;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.647-655
    • /
    • 2021
  • The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

Analysis of Changes and Factors Influencing IAQ in Subway Stations Using IoT Technology after Bio-Filter System Installation (IoT 기반 지하역사 내 바이오필터시스템 설치에 따른 실내공기질 변화 및 영향 요인 분석)

  • Yang, Ho-Hyeong;Kim, Hyung-Joo;Bang, Sung-Won;Cho, Heun-Woo;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.410-424
    • /
    • 2021
  • Background: Subway stations have the characteristics of being located underground and are a representative public-use facility used by an unspecified number of people. As concerns about indoor air quality (IAQ) increase, various management measures are being implemented. However, there are few systematic studies and cases of long-term continuous measurement of underground station air quality. Objectives: The purpose of this study is to analyze changes and factors influencing IAQ in subway stations through real-time continuous long-term measurement using IoT-based IAQ sensing equipment, and to evaluate the IAQ improvement effect of a bio-filter system. Methods: The IAQ of a subway station in Seoul was measured using IoT-based sensing equipment. A bio-filter system was installed after collecting the background concentrations for about five months. Based on the data collected over about 21 months, changes in indoor air quality and influencing factors were analyzed and the reduction effect of the bio-filter system was evaluated. Results: As a result of the analysis, PM10, PM2.5, and CO2 increased during rush hour according to the change in the number of passengers, and PM10 and PM2.5 concentrations were high when a PM warning/watch was issued. There was an effect of improving IAQ with the installation of the bio-filter system. The reduction rate of a new-bio-filter system with improved efficiency was higher than that of the existing bio-filter system. Factors affecting PM2.5 in the subway station were the outdoor PM2.5, platform PM2.5, and the number of passengers. Conclusions: The IAQ in a subway station is affected by passengers, ventilation through the air supply and exhaust, and the spread of particulate matter generated by train operation. Based on these results, it is expected that IAQ can be efficiently improved if a bio-filter system with improved efficiency is developed in consideration of the factors affecting IAQ and proper placement.

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

The Application of an EU REACH Protocol to the Occupational Exposure Assessment of Methanol: Targeted Risk Assessment (메탄올 작업장 노출 평가에의 EU REACH 프로토콜 적용: Targeted Risk Assessment)

  • Ra, Jin-Sung;Song, Moon Hwan;Choe, Eun Kyung
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.432-445
    • /
    • 2021
  • Background: The European Centre for Ecotoxicology and Toxicology of Chemicals' Targeted Risk Assessment (ECETOC TRA) tool has been recognized by EU REACH as a preferred approach for calculating worker health risks from chemicals. Objectives: The applicability of the ECETOC TRA to occupational exposure estimation from industrial uses of methanol was studied by inputting surveyed and varied parameters for TRA estimation as well as through comparison with measured data. Methods: Information on uses of methanol was collected from seven working environment monitoring reports along with the measured exposure data. Input parameters for TRA estimation such as operating conditions (OCs), risk management measures (RMMs) and process categories (PROCs) were surveyed. To compare with measured exposures, parameters from the surveyed conditions of ventilation but no use of respiratory protection were applied. Results: PROCs 4, 5, 8a, 10, and 15 were assigned to ten uses of methanol. The uses include as a solvent for manufacturing sun cream, surfactants, dyestuffs, films and adhesives. Methanol was also used as a component in a release agent, hardening media and mold wash for cast products as well as a component of hard-coating solution and a viscosity-controlling agent for manufacturing glass lenses. PROC 8a and PROC 10 of a cast product manufacturer without LEV (local exhaust ventilation) and general ventilation as well as no respiratory protection resulted in the highest exposure to methanol. Assuming the identical worst OCs and RMMs for all uses, exposures from PROC 5, 8a, and 10 were the same and the highest followed by PROC 4 and 15. The estimation resulted in higher exposures in nine uses except one use where measured exposure approximated exposures without RMMs. Conclusions: The role of ECETOC TRA as a conservative exposure assessment tool was confirmed by comparison with measured data. Moreover, it can guide which RMMs should be applied for the safe use of methanol.

Development of Eco-friendly Combustion Process for Waste 2,4,6-trinitrotoluene (폐 2,4,6-trinitrotoluene의 환경 친화적 연소처리공정 개발)

  • Kim, Tae Ho;An, Il Ho;Kim, Jong Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.247-254
    • /
    • 2021
  • In this study, an eco-friendly combustion process of waste 2,4,6-trinitrotoluene (TNT: 2,4,6-trinitrotoluene) was developed, and fundamental data for the quantity of the organic matter in the final combustion residues is presented. Because complete combustion of TNT is not possible theoretically, the combustion process was optimized to reduce organic matter content in the combustion residue by performing measures such as heating time changes, addition of propellant material, and after treatment using a high-temp electrical furnace. From the results, it was confirmed that the organic matter content in the residue could be decreased to 7 ~ 10% with each method. The quantity of the organic matter could be minimized by optimizing the combustion conditions of the process. With only a combustion time increase, the amount of organic matter in the combustion residues was measured at about 9 wt%. The environmental friendliness of the final exhaust gas was also confirmed by real time gas component analyses. In addition, the organic contents could be reduced by a further 2 wt% by applying an additional heat treatment using an external electric furnace after the first incineration treatment. In the combustion process of propellant added waste TNT, it was found that various TNT wastes could be treated using the same eco-friendly protocols because the organic content in the residue decreased in accordance with the amount of propellant. The amount of the organic matter content produced by all these methods fulfilled the requirements under the Waste Management Act.

Feasibility Study of Fuel Property for Fuel Processing Design on Ship and Warship (선박의 연료품질 기반 군용선박의 연료품질 적용가능성 분석)

  • Hwang, Gwang-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.281-286
    • /
    • 2021
  • The International Maritime Organization recently proposed a policy to establish a preemptive response strategy for exhaust gas pollution on board ships according to the recent strengthening of the sulfur content regulations. Discussions on improving the fuel oil quality and reducing emissions are also ongoing. Fuel oil quality information, which is one of the main concerns internationally, is increasing as the sulfur content standard is being applied from the current 3.5% to 0.5% by 2020. From the perspective of shipping companies and recipients, the essential quality of fuel oil is also requested for domestic and international fuel oil information, basic properties, correlation information between characteristics for application of solid ships and ships. The current standard for the basic quality of fuel oil is generally used, but the nature and composition of the fuel oil are very complex, and the interpretation of the basic quality is complicated because there are many cases outside the scope of the basic standard. Various factors were analyzed for the basic quality of fuel oil in terms of the basic quality of fuel oil, optimization of operation in ships, and fuel efficiency in ships. Moreover, the possibility of applying the standard according to the dilution was suggested.