• Title/Summary/Keyword: Exfoliated

Search Result 247, Processing Time 0.02 seconds

Analysis of changes in composition of amber with ageing using pyrolysis/GC/MS (열분해/GC/MS를 이용한 열화 호박(amber)의 성분 변화 분석)

  • Park, Jongseo
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • Ambers have been used mostly as beads, jewelry and ornaments from ancient times and excavated as a buried artifact. When excavated, they are severely weathered to be cracked, exfoliated and disintegrated. Monitoring of changes in composition of amber according to weathering is very important for diagnosing the condition of amber and applying conservation materials and techniques. In this study, we tried to find the components of amber by analyzing amber with pyrolysis/GC/MS. The changes in the composition of pyrolzates after artificial ageing for 60 days under heat and oxygen were also observed. Abietic acid was detected as a main component of fresh amber and monoterpene, alkene, aromatic hydrocarbon were detected as major pyrolyzates. Changes with artificial ageing was estimated by comparing the peak area ratio of 23 components, and it was found that abietic acid abruptly decreased in the presence of heat and oxygen together, revealing that oxygen is a key factor to the deterioration of amber. It was also tried to understand the weathered surface of original amber gemstone based on the result of this ageing experiment.

Production Method of Wooden Seated Bodhisattva from Gwaneumsa Temple, Wando (완도 관음사 목조보살좌상의 제작 방법)

  • Kwak, Eungyung;Lee, Hyejin;Yu, Sohyun;Son, Jongmin
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.77-92
    • /
    • 2017
  • This study is based on a scientific analysis of the production method of the wooden seated Bodhisattva statue from Gwaneumsa Temple in Wando, which is currently housed at Chonnam National University Museum. The purpose was to investigate the characteristics of the statue's production through an X-ray inspection of the wooden timbers that make up its base material, a composition analysis of the surface layers, and microscopic observation. The votive prayers found together with the statue allowed the precise dating of the artifact to the sixteenth century, during the Joseon Dynasty. The X-ray transmission identified the statue as being made using the "ilmokjo"(一木造) technique, which means that the entirety of the statue excluding the right hand was produced using a single block of wood. The specimen analysis of the naturally exfoliated surface layer revealed that the current surface was coated with brass to restore the original gilt layer. These research findings added an interesting case to the existing related research and reaffirmed the academic value of this statue.

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

Preparation and Characterization of Rubber/Clay Nanocomposite Using Skim Natural Rubber Latex (스킴천연고무 라텍스를 이용한 고무/점토 나노복합체의 제조 및 특성)

  • Alex, R.;Kim, M.J.;Lee, Y.S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • A new route for making rubber/clay nanocomposites was suggested based on skim natural rubber latex (SNRL), which is a protein rich by-product obtained during the centrifugal concentration of natural rubber (NR) latex. NR/acrylonitrile butadiene rubber (NBR) based nanocomposites were prepared from SNRL and NBR latex of 26 % acrylonitrile content by blending of aqueous dispersion of organoclay (OC) followed by coagulation, drying, mill mixing and vulcanization. X-ray diffraction(XRD) studies revealed that NR/NBR blend nanocomposites exhibited a highly intercalated and exfoliated structure, especially for NBR-rich blends. Dynamic mechanical studies showed that more compatible behavior was observed for NBR-rich blends. The 25/75 NR/NBR blend nanocomposite showed the best mechanical properties.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

High-performance of Flexible Supercapacitor Cable Based on Microwave-activated 3D Porous Graphene/Carbon Thread (마이크로웨이브 활성화 3차원 다공성 그래핀/탄소실 기반의 고성능 플렉서블 슈퍼커패시터 케이블)

  • Park, Seung Hwa;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • We report a supercapacitor cable, which consists of three-dimensional (3D) porous graphene coated onto the surface of carbon thread. The 3D porous framework of graphene was constructed by microwave-activated process using a graphene oxide-coated carbon thread. The use of microwave irradiation enabled to convert graphene oxide into reduced graphene oxide without any reducing agents and activate graphene sheets into exfoliated and porous graphene sheets. Combining two wire electrodes with a polymer gel electrolyte successfully completed supercapacitor device in a form of cable construction. The supercapacitor cables were highly flexible, and thus can be transformed into various shapes of devices and be integrated into textile items. A high area-capacitance of 38.1 mF/cm was obtained at a scan rate of 10 mV/s. This capacitance was retained 88% of its original value at 500 mV/s. The cycle life was also demonstrated by repeating a charge/discharge process during 10,000 cycles even under bent states, showing a high capacitance retention of 96.5%.

The Research of Condition for Mural Tomb in Goa-ri, Goryeong in Gaya period (대가야 시기 고령 고아리 벽화 고분의 보존 상태 연구)

  • Lee, Kyeong Min;Lee, Hwa Soo;Han, Kyeong Soon
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.44-61
    • /
    • 2015
  • Mural tomb in Goa-ri(Goryeong) built in the 6th Century Gaya period investigated precisely by the scientific method. They were used to optical equipments for investigation and made a damage map according to the damaging types. The mortar layer was mostly exfoliated from the rest of the wall except for the burial chamber ceiling and corridor ceiling. Also painting layers rarely not observed. Most of the paintings were damaged except lotus painting in burial chamber ceiling. Various damage types that exfoliation, earthen dirt, film coating were found in murals. Damage factors of mural were the porous characteristics of mortar layer and the movement of moisture in the murals. They were caused physical damage such as crack, exfoliation. It was getting worse and causing to secondary damage like earthen dirt, film coating.

Development of Anti-aging from Natural Materials by Inhibition of UV Stimulating (자외선 자극에 의한 피부노화 억제 천연물 소재 개발)

  • Dang, Su-Min
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.251-257
    • /
    • 2021
  • ln this study, natural extracts extracted from cypress sapiens, a natural material, were investigated as materials that could protect skin aging caused by ultraviolet rays, and experiments were conducted on the synthesis of filaggrins that make up the natural moisturizing factor of the skin, the synthesis of pro-colagen, a fibrous protein, which plays an important role in moisturizing the dermis, and elastin, which is an enzyme that decomposes collagen. As a result, cypress ethanol extract (COE) was a dependent inhibitor to collagenase and elastase, inhibiting the synthesis of filaggrin and the expression of MMP-1 for exfoliated cells damaged by ultraviolet rays. Therefore, it is estimated that ethanol extract will have the effect of delaying wrinkles and as a functional cosmetic material that inhibits skin aging convergence. Based on this study, we would like to further study the mechanism of the synthesis of filaggrin on the suppression of expression of MMP, which is the anti-wrinkle effect.

Rheological and Thermal Properties of PLA Nano-composite Modified by Reactive Extrusion (반응압출 공정으로 개질된 PLA 나노복합체의 유변학적 및 열적 물성)

  • Kang, Gyeoung-Soo;Kim, Bong-Shik;Shin, Boo-Young
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • In this study, poly(lactic acid) (PLA) was modified by reactive extrusion with a functional monomer GMA(glycidyl methacrylate), MMT(montmorillonite), and initiator to enhance the melt strength. Each modified PLA was prepared with different amounts of GMA and MMT and was characterized by measuring thennal- and melt-viscoelastic properties. The degree of dispersion of MMT was measured by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The glass transition temperature($T_g$) of modified PLA-GMA-MMT nanocomposite decreased with increasing GMA content, but was a little affected by the amount of MMT. Surface analysis showed that the nanocomposite became more intercalated than exfoliated as the amount of MMT increases. The complex viscosity and storage modulus of the nano-composite were greatly increased by addition of MMT.

Elemental characteristics of sialoliths extracted from a patient with recurrent sialolithiasis

  • Buyanbileg Sodnom-Ish;Mi Young Eo;Kezia Rachellea Mustakim;Yun Ju Cho;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.50 no.2
    • /
    • pp.94-102
    • /
    • 2024
  • The exact mechanism of sialolith formation has yet to be determined. Recurrence of sialolithiasis is rare, affecting only 1%-10% of patients. The current study presents a case of recurrent stones that occurred twice on the right submandibular gland 6 months postoperative and 7 months after reoperation in a 48-year-old female patient. The stones were analyzed using histology, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy (TEM). The first stone showed a three-layered structure with a poorly mineralized peripheral multilayered zone, highly mineralized middle layer, and the central nidus. The stones were composed of Ca, C, O, Cu, F, N, P, Si, Zn, and Zr. In TEM, compact bi-layered bacterial cell membrane was found on the peripheral layer and the central nidus of the stone as well as exosomes in the central nidus. The results demonstrated the essential components of sialolith formation, including bacteria, inflammatory exosomes, and exfoliated salivary epithelial cells that cooperatively underwent the pathogenetic progresses of central nidus formation, induction of compact zone calcification of the middle layer, and repeated subsequent deposition in the peripheral multilayer zone. The rapid recurrence could have resulted from residual pieces of a sialolith acting as the nidus of bacterial infection.