• Title/Summary/Keyword: Exergy analysis

Search Result 112, Processing Time 0.023 seconds

Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas (액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발)

  • Noh, Wonjun;Park, Sihwan;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.200-208
    • /
    • 2021
  • Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.

Energy Analysis of Constant-Pressure Compressed Air Energy Storage (CAES) Generation System (정압식 압축공기저장(CAES) 발전 시스템 에너지 분석)

  • Kim, Young-Min;Lee, Sun-Youp;Lee, Jang-Hee
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-184
    • /
    • 2011
  • Compressed Air Energy Storage (CAES) is a combination of energy storage and generation by storing compressed air using off-peak power for generation at times of peak demand. In general, both charging and discharging of high-pressure vessel are unsteady processes, where the pressure is varying. These varying conditions result in low efficiencies of compression and expansion. In this paper, a new constant-pressure CAES system to overcome the current problem is proposed. An energy analysis of the system based on the concept of exergy was performed to evaluate the energy density and efficiency of the system in comparison with the conventional CAES system. The new constant-pressure CAES system combined with pumped hydro storage requires the smaller cavern with only half of the storage volume for variable-pressure CAES and has a higher efficiency of system.

Design and Assessment of Reliquefaction System According to Boil Off Gas Reliquefaction Rate of Liquefied Hydrogen Carrier (액화수소 운반선의 증발가스 재액화 비율에 따른 재액화 시스템의 설계 및 평가)

  • Cho, Wook-Rae;Lee, Hyun-Yong;Ryu, Bo-Rim;Kang, Ho-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.283-290
    • /
    • 2020
  • BOG (Boil Off Gas) generation is unavoidable in the liquefied hydrogen carrier, and proper measures are necessary to prevent pressure problems inside the cargo tank. The BOG can be used as propulsion fuel for ships, and the remaining parts used for propulsion must be effectively managed, such as in the form of reliquefying or burning. This study proposes an BOG reliquefaction system optimized for a 160,000 m3 liquefied hydrogen carrier with a hydrogen propulsion system. The system comprises a hydrogen compression and helium refrigerant section, and increases the efficiency by effectively using the cold energy of the BOG discharged from the cargo tank. In this study, the system was evaluated through the exergy efficiency and SEC (Specific Energy Consumption) analysis according to the rate of the reliquefaction of the BOG while the hydrogen BOG with a supply temperature of -220℃ entered the reliquefaction system. As a result, it showed SEC of 4.11 kWh/kgLH2 and exergy efficiency of 60.1% at the rate of reliquefaction of 20%. And the parametric study of the effects of varying the hydrogen compression pressure, inlet temperature of the hydrogen expander, and the feed hydrogen temperature was conducted.

Exergetic and Thermoeconomic Analysis of a 200kW Phosphoric Acid Fuel Cell Plant (200kW 인산형 연료전지 발전시스템의 엑서지-열경제학적 해석)

  • Jeon, J.;Kwak, H.;Lee, H.;Choi, D.;Park, D.;Cho, Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.689-696
    • /
    • 2001
  • Exergetic and thermoeconomic analysis were performed for a 200kW Phosphoric Acid Fuel Cell(PAFC) plant which offers many advantage for cogeneration in the aspect of high electrical efficiency and low emission. This analytical study was based on the data obtained by in-field measurement of PC25 fuel cell plant to find whether this system is viable economically. For 100% load condition, the electrical efficiency and the unit cost of electricity are about 45% and 0.032 $/kWh respectively, which turn out to be much better than those for the 1000kW gas turbine cogeneration plant. Further, at lower loads, the unit costs of electricity and hot water increase slightly and consequently more economic operation is possible at any loads.

  • PDF

Design of BOG re-liquefaction system of 20,000 m3 liquid hydrogen carrier

  • Byeongchang Byeon;Hwalong You;Dongmin Kim;Keun Tae Lee;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Deuk Yong Koh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.49-55
    • /
    • 2023
  • This paper presents the design of a re-liquefaction system as a BOG (boil-off gas) handling process in liquid hydrogen transport vessels. The total capacity of the re-liquefaction system was assumed to be 3 ton/day, with a BOR (boil-off rate) of 0.2 %/day inside the cargo. The re-liquefaction cycle was devised using the He-Brayton Cycle, incorporating considerations of BOG capacity and operational stability. The primary components of the system, such as compressors, expanders, and heat exchangers, were selected to meet domestically available specifications. Case studies were conducted based on the specifications of the components to determine the optimal design parameters for the re-liquefaction system. This encompassed variables such as helium mass flow rate, the number of compressors, compressor inlet pressure and compression ratio, as well as the quantity and composition of expanders. Additionally, an analysis of exergy destruction and exergy efficiency was carried out for the components within the system. Remarkably, while previous design studies of BOG re-liquefaction systems for liquid hydrogen vessels were confined to theoretical and analytical realms, this research distinguishes itself by accounting for practical implementation through equipment and system design.

Second Law Optimization of Water-to-Water Heat Pump System

  • Kim, Kyu-Hyung;Woo, Joung-Son;Lee, Se-Kyoun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.122-128
    • /
    • 2003
  • This paper presents a thermodynamic analysis of heat pump system using water as a heat source and heat sink. The primary object in this study is the optimization of exergetic efficiency. Two different systems, 2-stream and 1-stream system, are analyzed in detail. Mass flow ratio (the ratio of mass flow rate of water through evaporator to that through condenser) is identified as the most important parameter to be optimized. It is shown that there exists an optimum mass flow ratio to maximize exergetic efficiency. The variation of optimum exergetic efficiency of 2-stream system is quite small and the value lies between 0.2∼0.23 for the range of investigation in this study. However, far better performance can be obtained from 1-stream system. This means considerable irreversibilities are generated through condenser of the 2-stream system. The effects of adiabatic efficiency of compressor-motor unit on the overall system performance are also examined in the analysis.

Thermodynamic Analysis of Thermochemical Process for Water Splitting (고온열 이용 공정의 열역학적 해석)

  • Kim, Jong-Won;Son, Hyun-Myung;Lee, Sana-Ho;Sim, Kyu-Sung;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.204-213
    • /
    • 2002
  • In this work, hydrogen production by a 2-step water-spritting thermochemical cycle based on metal oxides redox pairs was investigated on the bases of the thermodynamics and technical feasibility. Also, a 2nd-law analysis performed on the closed cyclic process indicates a maximum exergy conversion efficiency of 7.1% when using a solar cavity-receiver operated at 2300K and air/Fe3O4 molar ratio = 10.

Exergy Analysis of Refrigeration Cycle With Mixed Refrigerants Considering The Heat Exchange Process (열교환 과정을 고려한 혼합매체 냉동사이클의 엑서지 해석)

  • Jeong Sang Kwon;Ro Sung Tack
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.3
    • /
    • pp.305-314
    • /
    • 1987
  • Thermodynamic analysis of a mixed refrigerant refrigeration cycle has been performed by computing thermodynamic properties of various refrigerants. The analyses are carried cut to identify the sources and distribution of the energy degradation by irreversible processes. Heat exchange process with the surroundings produces the entropy and the irreversible loss can be reduced by the mixed refrigerant whose phase change temperature varies during the phase change processes in the evaporator and the condenser. The concept has been applied to find the minimum compression work and thus the minimum energy loss in the overall system, specifically in the case of the mixed refrigerant of R12 and R114. Parametric studies have been added to recognize the various factors affecting the system performance.

  • PDF

A Performance Analysis of a Spark Ignition Engine Using Gasoline, Methanol and M90 by the Thermodynamic Second Law (가솔린, 메탄올, M90 연료를 사용한 전기점화기관에서의 열역학 제 2법칙적 성능해석)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.22-28
    • /
    • 2009
  • 열역학 제 2법칙의 관점의 열역학적 가용에너지인 엑서지 해석법을 적용하여 가솔린, 메탄올, M90 연료를 사용한 전기점화 기관의 성능해석을 수행하였다. 열역학적 사이클 해석을 위하여 사이클을 구성하는 각 과정은 열역학적 모델로 단순화하였고, 크랭크 각도에 따른 실린더의 압력과 작동유체를 구성하는 연료, 공기 및 연소생성물의 열역학적 물성 값들을 이용하여 각 과정에서의 엑서지와 손실 일을 계산하였다. 실험데이터는 단기통 전기점화기관을 가솔린, 메탄올과 M90(메탄을 90%+부탄 10%의 혼합연료)을 연료로 WOT(Wide Open Throttle), MBT(Minimum advanced spark timing for Best Torque), 2500rpm 조건으로 운전하여 측정하였다. 계산에 이용한 자료는 실험으로 측정한 크랭크 각도에 따른 연소실의 압력, 흡입공기와 연료유량, 흡입공기 온도, 냉각수 온도와 배출가스 온도 등이다. 이를 이용하여 각 과정에서의 엑서지와 손실 일을 계산하였으며 각 과정에서의 손실 일은 연소과정에서 가장 크며 팽창과정, 배출과정, 압축과정 및 흡입과정 순으로 크게 나타났다.

  • PDF