• 제목/요약/키워드: Exergetic efficiency

검색결과 20건 처리시간 0.024초

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

압축기 출구 물분사가 있는 재생 가스터빈 시스템의 엑서지 해석 (Exergy Analysis of Regenerative Gas Turbine Systems with Afterfogging)

  • 김경훈;고형종;김세웅
    • 한국산업융합학회 논문집
    • /
    • 제13권1호
    • /
    • pp.31-39
    • /
    • 2010
  • An exergy analysis is carried out for the regenerative gas turbine cycle which has a potential of enhanced thermal efficiency and specific power owing to the more possible water injection than that of inlet fogging under the ambient conditions. Using the analysis model in the view of the second law of thermodynamics, the effects of pressure ratio, water injection ratio and ambient temperature are investigated on the performance of the system such as exergetic efficiency, heat recovery ratio of recuperator, exergy destruction or loss ratios, and on the optimal conditions for maximum exergy efficiency. The results of computation for the typical cases show that the regenerative gas turbine system with afterfogging can make a notable enhancement of exergy efficiency.

  • PDF

에너지 시스템에 대한 전력 및 열 비용산정 (Suggestion of Power and Heat Costing for an Energy System)

  • 김덕진
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.360-371
    • /
    • 2003
  • The calculation of each unit cost of productions is very important for evaluating the economical efficiency and deciding the reasonable sale price. In the present, two methods of exergy costing on multiple energy systems are suggested to reduce the complexities of conventional SPECO method and MOPSA method and to improve the calculation efficiency of exergoeconomics. The suggested methods were applied to a gas-turbine cogeneration and the unit costs of the power and the steam energy were calculated as an example. The main points of our methods are the following three. First, one exergetic cost is applied to one cycle or system. Second, the suggested equations are the internal cost balance equation and the production cost balance equation. Third, necessary states in a system are only inlet and exit states of 1ha components producing energy.

증기분사 재생 가스터빈 시스템의 엑서지 해석 (Exergy Analysis of Regenerative Steam-Injection Gas Turbine Systems)

  • 김경훈;정영관;한철호
    • 한국추진공학회지
    • /
    • 제13권4호
    • /
    • pp.45-54
    • /
    • 2009
  • 열효율과 비동력을 대폭 향상시킬 수 있는 잠재성을 가진 증기분사 재생 가스터빈 시스템에 대해 엑서지 해석을 수행하였다. 열역학 제2법칙을 근거로 한 해석 모델을 이용하여 압력비, 증기분사율, 주위 온도, 터빈입구온도 등 주요 설계변수들의 변화에 따라 엑서지 효율, 열교환기의 엑서지 회수율, 엑서지 파괴율 및 손실률 등 시스템의 성능과 최대 엑서지 효율에 미치는 영향을 조사하였다. 계산 결과 재생 증기분사 가스터빈 시스템은 시스템의 엑서지 효율을 대폭 증대시키고 비가역성을 감소시킨다는 사실을 확인하였다.

증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석 (Energy and Exergy Analysis of a Steam Turbine Cogeneration System)

  • 조성철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima;Fani, Maryam;Talebi, Saeed
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.677-687
    • /
    • 2021
  • The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.

엑서지를 이용한 대형 발전용 가스터빈의 부분부하 성능 분석 (Exergy-Based Performance Analysis of Heavy-duty Gas Turbine in Part-Load Operating Conditions)

  • 송태원;손정락;김재환;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.751-758
    • /
    • 2001
  • Exergy concept is applied to the analysis of part-load performance of gas turbine engine. Exergy is a useful tool to find the source of irreversibility in thermal system. In this study, details of the performance characteristics of a heavy-duty gas turbine, l50MW-class GE 7FA model, are described by theoretical investigations with exergy analysis. Result shows that exergy destruction rate of gas turbine increases with decreased load, which means increase of irreversibility. Also, it is found that variations of IGV angle and amount of cooling air for turbine blades are closely related to the inefficiencies of compressor and turbine, respectively.

  • PDF

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

열병합발전에서 비용배분 방법론의 고찰 (Consideration of Cost Allocation Methodology on Cogeneration)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1197-1202
    • /
    • 2009
  • Cost allocation on cogeneration is a methodology dividing the input of common cost to electricity cost and heat cost. In the cost allocation methodology of the electricity and heat on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, reversible work method, various exergetic methods, and so on. In previous study, various cost allocation methodologies have been applied and analyzed on a gas-turbine cogeneration producing the 33.1 MW of electricity and the 32.2 Gcal/h of heat, a steam-turbine cogeneration producing the 22.2 MW of electricity and the 44.3 Gcal/h of heat, and combined-cycle cogeneration producing the 314.1 MW of electricity and the 279.4 Gcal/h of heat. In this study, we integrately analyze the results of previous studies and examine the generality and rationality each methodology. Additionally, a new point of view on the values of alternative electricity efficiency and alternative heat efficiency in the previous methodologies was proposed. As the integrated result, we conclude that reversible work method of various common cost allocation methodologies is most rational.

  • PDF

증기 분사 방식에 따른 가스터빈 시스템의 엑서지 해석 (Exergy Analysis of Gas Turbine System Depending on Steam Injection Method)

  • 다시카;임석규;정영관;김경훈
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.570-576
    • /
    • 2017
  • Gas turbine system with steam injection has shown outstanding advantages such as high specific power and NOx reduction. In the present work, a comparative exergetic analysis was carried out for Steam Injected Gas Turbine (STIG), Regenerative Steam Injected Gas Turbine (RSTIG), and Regenerative After Fogging Gas Turbine (RAF). Effects of pressure ratio, steam injection ratio and steam injection method on the system performance was theoretically investigated. The results showed that the order of the highest exergy efficiency is RSTIG, RAF, and STIG for low pressure ratios but STIG, RSTIG, and RAF for high pressure ratios. In each arrangement, the combustion chamber has the highest exergy destruction and the compressor has the second one.