• 제목/요약/키워드: Exclusion Rules

검색결과 24건 처리시간 0.02초

Probabilistic Models for Local Patterns Analysis

  • Salim, Khiat;Hafida, Belbachir;Ahmed, Rahal Sid
    • Journal of Information Processing Systems
    • /
    • 제10권1호
    • /
    • pp.145-161
    • /
    • 2014
  • Recently, many large organizations have multiple data sources (MDS') distributed over different branches of an interstate company. Local patterns analysis has become an effective strategy for MDS mining in national and international organizations. It consists of mining different datasets in order to obtain frequent patterns, which are forwarded to a centralized place for global pattern analysis. Various synthesizing models [2,3,4,5,6,7,8,26] have been proposed to build global patterns from the forwarded patterns. It is desired that the synthesized rules from such forwarded patterns must closely match with the mono-mining results (i.e., the results that would be obtained if all of the databases are put together and mining has been done). When the pattern is present in the site, but fails to satisfy the minimum support threshold value, it is not allowed to take part in the pattern synthesizing process. Therefore, this process can lose some interesting patterns, which can help the decider to make the right decision. In such situations we propose the application of a probabilistic model in the synthesizing process. An adequate choice for a probabilistic model can improve the quality of patterns that have been discovered. In this paper, we perform a comprehensive study on various probabilistic models that can be applied in the synthesizing process and we choose and improve one of them that works to ameliorate the synthesizing results. Finally, some experiments are presented in public database in order to improve the efficiency of our proposed synthesizing method.

다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계 (Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures)

  • 신대정;나승유
    • 한국지능시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.14-24
    • /
    • 1996
  • 유전자 알고리즘을 이용한 다양한 특징의 분석이 필요한 퍼지 분류기의 설계방법을 제안한다. 본 논문에서 제안한 퍼지 분류기의 퍼지 논리를 이용한 분류 부분과 우전자 알고리즘을 이용한 규칙생성부분으로 구성된다. 유전자 알고리즘을 이용한 규칙 생성 부분에서는 최적의 퍼지 멤버쉽 함수를 결정하고, 각 특징이 규칙에 포함되는지 포함되지 않는지의 여부도 결정하게 된다. 또한 특정 대상에 대한 인식률을 분석하여 큰 오인식률을 갖는 부분에 세부 특징을 추가하는 방법과 문자열과 population의 최소크기, 인식률 개선을 위한 반복적 분석 방법을 사용한다. 제안된 퍼지 분류기의 적용 예로서, 아이리스 테이터와 갑상선 종양 세포, 그리고 필기된 숫자와 인쇄된 숫자의 인식을 든다. 필기된 숫자와 인쇄된 숫자의 인식을 위해서 각 숫자를 구조적인 정보가 동일한 그룹으로 분류한다. 본 논문에서 제안한 퍼지 분류기는 아이리스 데이터에 대해 98.67%의 인식률을 갑상선 종양 세포에 대해서 98.25%의 인식률을 필기된 숫자와 인쇄된 숫자에 대해서 96.3%의 인신룩을 얻었다.

  • PDF

퍼지로직과 유전 알고리즘을 이용한 영상 인식 (Image Recognition by Fuzzy Logic and Genetic Algorithms)

  • 류상진;나철훈
    • 한국정보통신학회논문지
    • /
    • 제11권5호
    • /
    • pp.969-976
    • /
    • 2007
  • 유전자 알고리즘을 이용한 다양한 특징의 분석이 필요한 퍼지 분류기의 설계 방법을 제안한다. 본 논문에서 제안한 퍼지 분류기는 퍼지 논리를 이용한 분류 부분과 유전자 알고리즘을 이용한 규칙 생성 부분으로 구성된다. 유전자 알고리즘을 이용한 규칙 생성 부분에서는 최적의 퍼지 멤버쉽 함수를 결정하고, 각 특징이 규칙에 포함되는지 포함되지 않는지의 여부도 결정하게 된다. 또한, 특정 대상에 대한 인식률을 분석하여 큰 오인식률을 갖는 부분에 세부 특징을 추가하는 방법과 문자열과 population의 최소 크기, 인식률 개선을 위한 반복적 분석 방법을 사용한다. 제안된 퍼지 분류기의 적용 예로서, 아이리스 데이터와 갑상선 종양 세포의 식별을 든다. 본 논문에서 제안한 퍼지 분류기는 아이리스 데이터에 대해 98.67%의 인식률을, 갑상선 종양 세포에 대해서 98.25%의 인식률을 얻었다.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • 대한원격탐사학회지
    • /
    • 제26권3호
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.