• Title/Summary/Keyword: Exciting Force

Search Result 194, Processing Time 0.019 seconds

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting(2nd Report: Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진공에 관한 연구(제2보 : 강제 감쇠 연성진동해석))

  • 전효중;이돈출;김의간;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.563-572
    • /
    • 2001
  • With the results of calculation for natural frequencies the reponses of forced coupled vibration of propulsion shafting system were investigated by the modal analysis method. For the forced vibration response analysis, the axial exciting forces, the axial damper/detuner, propeller exciting forces and damping coefficients were extensively considered. As the conclusion of this study, some items are cleared as follows.-The torsional vibration amplitudes are not influenced by the radial excitation forces of the crank shaft. -The axial vibration amplitudes are influenced by the tangential exciting forces as well as the radial exciting forces of the crank shaft. The increase of the amplitudes is observed in the speed range at the neighbourhood of any torsional critical speed. 1The closer the torsional and axial critical speed. the larger coupling effect becomes. -The axial exciting force of propeller is relatively strong comparing with axial exciting forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, the following conclusions are obtained. -Torsional vibration calculation with the classical one dimensional model is still valid. -The influence of torsional excitation at each crank upon the axial vibration is improtant. especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimensional model is inaccurate in most of cases.

  • PDF

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석))

  • 이돈출;김의간;전효중
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

Analysis of added resistance of a ship advancing in waves (파랑중에서 전진하는 선박의 부가저항 해석)

  • 이호영;곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • This paper presents theoretical formulations and numerical computations for predicting first-and second-order hydrodynamic force on a ship advvancing in waves. The theoretical formulation leads to linearized radiation and diffration problems solving the three-dimensional Green function integral equations over the mean wetted body surface. Green function representing a translating and pulsating source potantial for infinite water depth is used. In order to solve integral equations for three dimentional flows using Green function efficiently, the Hoff's method is adopted for numerical calculation of the Green function. Based on the first-order solution, the mean seconder-order forces and moments are obtained by directly integrating second-order pressure over the mean wetted body surface. The calculated items are carried out for analyzing the seakeeping characteristics of Series 60. The calculated items are hydrodynamic coefficients, wave exciting forces, frequency response functions and addd resistance in waves.

  • PDF

Vibration Analysis for BLDC Motor by Electromagnetic Exciting Force (전자기 가진력에 의한 BLDC 전동기의 진동 특성 해석)

  • Chung, H.J.;Shin, P.S.;Woo, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.118-120
    • /
    • 2007
  • This paper deals with the vibration analysis of characteristics for BLDC motor by electromagnetic exciting force. Vibration analysis of electric machine is mainly divided into mechanical and electrical approach. However, it need to execute coupling analysis of mechanical and electrical computation because the vibration sources have relation to each other. Magnetic fields is calculated from Maxwell stress method with electromagnetic finite element method. And magnetic radial force is calculated from previous magnetic fields. With coupled electromagnetic and structure finite element, the vibratory behavior between the phase commutation advancing technique and pulse-width control is investigated in single phase brushless dc motor.

  • PDF

Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force (충격가진에 의한 진동판의 방사음에 대한 동특성)

  • 오재응
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF

Research on Wave Kinematics & Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 대한 연구)

  • LEE BYEONG-SEONG;JO HYO-JAE;GOO JA-SAM;KANG BYUNG-YOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • When the wind blows hard, most waves are breaking in sea. Breaking waves occur, exceeding limitation of wave steepness(wave height/wave length=l/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at two dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies. We research how are the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force. We compare the force in a regular wave which has same specifications(wave height, period and length) as the breaking wave. Also the experimental results of wave exciting force and particle velocity are investigated by comparison on the analytic results using the potential theory.

  • PDF

Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow

  • Sun, Shuai;Li, Liang;Wang, Chao;Zhang, Hongyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.69-84
    • /
    • 2018
  • In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull-propeller-rudder system by Reynolds-Averaged Navier Stokes (RANS) method and volume of fluid (VOF) model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull-propeller-rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.

Nonlinear Response Characteristics of the ISSC TLP in Time Domain (시간영역에서 ISSC TLP의 비선형 응답 특성)

  • Lee, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

Effects of Segmented Poles on Exciting Forces for BLDC Motors (세그먼트 극을 가진 BLDC 전동기의 가진력에 관한 연구)

  • Kim, Gyeong-Tae;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.530-536
    • /
    • 1999
  • This paper investigates effects of segmented poles on exciting forces such as cogging torque, BEMF, phase current, torque ripple and local forces. Cogging torque, BEMF and local force are determined by FEM analysis and phase current is calculated using voltage equations after determining BEMF and phase inductance. Effective dead zones at pole separations result in wider than the physical dead zones due to leakage field during magnetization. Due to the existence of dead zones, there exist additional exciting harmonics of the cogging torque which play adverse effect on vibration and noise performance. The magnitude of BEMF is decreased and the waveforms are also distorted depending on dead zone positions. Segmented poles inevitably cause uneven magnetic field distribution at pole separations which introduces additional harmonics of exciting forces which are detrimental to structural to structural resonances. They also decrease motor efficiency by reducing effective phase BEMF.

  • PDF

Indirect force identification of air-jet weaving machine infrequency domain (에어제트 직기에 가해지는 가진력 추정)

  • Jung, Eui-Il;Chun, Du-Hwan;No, Suk-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.238-241
    • /
    • 2006
  • For the effective reduction of structural vibration level it is important to obtain the exciting force components. But, sometimes direct force measurement is infeasible due to the geometric limitation of sensor placement. In this case, indirect force identification becomes useful tool for obtaining input force information. In this paper, indirect force technique was applied to air-jet weaving machine and shows some numerical results.

  • PDF