• 제목/요약/키워드: Exciter test

검색결과 72건 처리시간 0.026초

전압 이중 검출법에 의한 독립형 엔진-발전기 시스템 응답특성 개선 (Dynamic Response Improvement of Stand Alone Engine-Generator System using Double Voltage Detection Method)

  • 이동희;안진우
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1195-1199
    • /
    • 2008
  • In this paper, peak detector of generator's output voltage and variable gain controller are introduced for a fast dynamic response. The conventional r,m.s, signal detected has inherent time delay, and the dynamic response of generator using conventional PID controller has some problem in sudden load change. In this paper, the peak detector and signal selector with variable gain controller is used to overcome this problem. The main controller can check the voltage state from the peak detector. When a sudden load change, the over-voltage and under-voltage signal from peak detector change the controller's gain and exciter's current reference. The proposed scheme can improve the dynamic response, which is verified from experimental test of 200kW diesel engine-generator.

팬 작동에 따른 비팅성 아이들 진동 평가 (Evaluation of idle vibration beated by cooling fan imbalance)

  • 박진한;안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.247-249
    • /
    • 2014
  • The beating phenomenon occurs because of various causes, when idle vibration was happened. In this study, the beating phenomenon was divided into several parameters and controlled by the parameter. It was hypothesized that the beating parameter is related to discomfort of idle vibration. The three-down one-up method was performed for evaluating discomfort of controlled vibrations, which is widely used in the field of psychophysics. As a result in pilot test, a subject responds beating vibration more discomfort than normal idle vibration. In the future, the study will be implemented to know how much the parameters of beating signal affect to the discomfort at idle vibration in passenger vehicle.

  • PDF

동하중재하시 지반진동에 관한 실험적 연구 (An Experimental Study of Ground Motion under the Dynamic Load)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF

철도교량 동적성능 평가를 위한 동특성 추출 실험연구 (Experimental Evaluation of Modal Properties for Estimation of the Railway Bridge Dynamic Performance)

  • 김성일;김남식;이정휘;이필구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.211-216
    • /
    • 2005
  • Resonance of railroad bridge can be broken out when natural frequency of the bridge coincides with exciting frequency of moving forces. In order to avoid aforementioned unpleasant response of the structure, exact determination of dynamic structural properties is important to understand dynamic behavior of the structure under moving train loads. In the present paper, a 25 meters long full scale IPC girder and 15m Precom girder models were fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with structural status.

  • PDF

고속전철 교량 감쇠 연구 (A Study on Damping Value of Bridge in High-speed Railway)

  • 최은석;진원종;곽종원;박성용;강재윤;김영진;김병석
    • 한국철도학회논문집
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2001
  • The dynamic characteristics such as natural frequency, mode shape and damping ratio are most important parameters in the high-speed railway bridges rather than general roadway bridges. Also, the need to know the dynamic behavior of bridges greatly increased in recent years. In the early of 1990s, to design the high-speed railway bridges, damping ratio recommended in general code was 2.5~7.5%. However, these values were not applied in all cases. Therefore, obtaining the damping value of specific structures is important to get the correct variable for design of high-speed railway bridges. The purpose of this study is mainly to obtain the damping ratio of high-speed railway bridges. The average damping ratio of high-speed railway bridges evaluated from a field test is about 2.4%.

  • PDF

중공부가 있는 다단계 긴장 PSC 거더의 동특성 실험 및 해석 (Dynamic Test and Analysis of Multilevel Post-tensioned PSC Girder with Holed Web)

  • 박봉식;조재열;한만엽
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.11-12
    • /
    • 2010
  • 복부에 중공부가 있는 PSC 거더는 여러 가지 이점이 있다. 중공부에 정착부를 두어 프리스트레싱힘을 단계적으로 도입할 수 있으며 길이가 동일한 경우 거더의 중량을 줄일 수가 있고, 같은 중량인 경우 경간을 더 늘일 수 있다. 그리고 빔에 의한 조망권의 간섭도 줄일 수 있다. 본 연구에서는 복부에 여러 개의 원형 개구부를 가지고 있는 50m 실물 다단계 긴장 PSC 거더를 제작하여 모달테스트를 수행하였다. 모달테스트를 위한 가진방법으로 거더의 중앙에 가진기를 설치하여 일정 주파수 단위로 가진시킴으로써 정확한 주파수응답을 얻고자 하였다. 얻어진 주파수응답을 FFT와 PSD를 통하여 거더의 고유진동수와 감쇠비를 추정하였고 이를 Midas FEA를 이용한 해석결과와 비교하였다.

  • PDF

Conditions to avoid synchronization effects in lateral vibration of footbridges

  • Andrade, Alexandre R.;Pimentel, Roberto L.;Silva, Simplicio A. da;Souto, Cicero da R.
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.201-220
    • /
    • 2022
  • Lateral vibrations of footbridges may induce synchronization between pedestrians and structure itself, resulting in amplification of such vibrations, a phenomenon identified by lock-in. However, investigations about accelerations and frequencies of the structural movement that are related to the occurrence of synchronization are still incipient. The aim of this paper is to investigate conditions that could lead to avoidance of synchronization among pedestrians themselves and footbridge, expressed in terms of peak acceleration. The focus is on the low acceleration range, employed in some guidelines as a criterion to avoid synchronization. An experimental campaign was carried out, employing a prototype footbridge that was set into oscillatory motion through a pneumatic exciter controlled by a fuzzy system, with controlled frequency and amplitude. Test subjects were then asked to cross the oscillating structure, and accelerations were simultaneously recorded at the structure and at the subject's waist. Pattern and phase differences between these signals were analysed. The results showed that test subjects tended to keep their walking patterns without synchronization induced by the vibration of the structure, for structural peak acceleration values up to 0.18 m/s2, when frequencies of oscillation were around 0.8 to 0.9 Hz. On the other hand, for frequencies of oscillation below 0.7 Hz, structural peak accelerations up to 0.30 m/s2 did not induce synchronization.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명 (Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors)

  • 백두산;황성호;김태호
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

가진기를 이용한 강제진동시험에 의한 전기 캐비닛의 실험적 모드특성 분석 (Analysis of Experimental Modal Properties of an Electric Cabinet via a Forced Vibration Test Using a Shaker)

  • 조성국;소기환
    • 한국지진공학회논문집
    • /
    • 제15권6호
    • /
    • pp.11-18
    • /
    • 2011
  • 원자력발전소(이하, 원전)에 설치되는 안전관련 전기기기들의 합리적인 내진검증을 위해서는 사전에 정확한 동특성분석이 필요하다. 이 연구에서는 원전에 설치되는 전기기기 캐비닛 구조를 대상으로 입력 진동의 수준에 따른 모드특성의 변화를 평가하였다. 이를 위해, 실제 전기기기 캐비닛을 시편으로 선정하고 가진 시험기를 이용하여 입력진동에너지의 크기를 변화시켜 가면서 진동시험을 수행하였다. 시험은 캐비닛의 문짝을 부착한 경우와 탈거한 경우로 구분하여 수행하였다. 진동시험을 통하여 계측된 시편의 가속도응답신호와 입력운동신호로부터 진동의 크기에 따라 진동수응답함수를 작성하였다. 다항식회귀분석기법을 이용한 모드분석기법으로 시편의 진동수응답함수를 분석하여 모드특성을 추출하고, 진동수준에 따른 시편의 동특성 변화를 검토하였다. 연구결과, 대상 기기는 입력진동의 크기가 증가할수록 모드진동수와 모드감쇠비가 비선형적으로 변화하는 것을 확인하였다. 문짝이 부착된 경우에는 문짝이 탈거된 경우에 비하여 캐비닛의 모드감쇠가 증가한다.