• Title/Summary/Keyword: Excited state lifetime

Search Result 28, Processing Time 0.018 seconds

Vibrational Structure and Predissociation of Ar-CO2 by CO2 Symmetric Stretching Mode Coupled with Ar Motion

  • Jung, Jae-Hoon;Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • The computationally simple quantum mechanical method (VSCF-DWB-IOS) has been applied to studying the Ar-$CO_2$ vibrational predissociation phenomenon. The new methodology utilizes the vibrational self-consistent field method to determine the vibrational structure of the van der Waals complex, the distorted-wave Born approximation for dissociating process, and the infinite-order sudden approximation for the continuum dissociating product of $CO_2$. The dissociation due to the coupling of the symmetric stretching vibrational motion of $CO_2$ with the motion of the Ar van der Waals mode has been extensively investigated. The lifetimes of transient excited vibrational states, linewidths of absorption peak, and the rotational state distributions of the product, $CO_2$ have been computed. It has been found that the lifetime of the Ar-$CO_2$ in excited vibrational state is very long compared with that of triatomic van der Waals complexes and the product $CO_2$ carries a major portion of dissociation energy as a rotational energy.

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.

Energy Transfer between Calixarene and Naphthalene

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1111-1115
    • /
    • 2002
  • The photoluminescence of calixarene crystals has been studied as functions of temperature, time, and concentration. The vibronic bands shift to longer wavelength and become significantly sharper as temperature decreases. The experimental results r eveal that the structural transformation occur during the annealing process. Time-resolved spectra of calixarene at 12 K are monitored. Spectral features, which demonstrate characteristic of energy transfer processes, are not observed. The depopulation of excited state density is mainly controlled by unimolecular decay process dominating other decay processes. The lifetime was found to be 2.6 $\pm$ 0.1 ns. For the case of calixarene mixed with naphthalene, the fluorescence spectrum shows that the band centered at 340 nm lies 2840 $cm^{-1}$ below the relatively broad 310 nm band found for calixarene crystals. The spectra also exhibit that the emission intensity increases with increasing calixarene concentration. The results are evident that the calixarene emission is quenched by the naphthalene. Phosphorescence of calixarene mixed with naphthalene crystals is observed to determine whether the emission is due to naphthalene. The phosphorescence peaks were compared with the ground-state vibrational frequencies of naphthalene and found to be in good agreement. The results indicate that inter-molecular energy transfer occurs between calixarene and naphthalene.

Fluorescence Intensity Changes for Anthrylazacrown Ethers by Paramagnetic Metal Cations

  • 장정호;김해중;박중희;신영국;정용석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.796-800
    • /
    • 1999
  • Three anthrylazacrown ethers in which the anthracene fluorophore π system is separated from the electron donor atoms by one methylene group were synthesized, and their photophysical study was accomplished. These fluorescent compounds showed a maximum fluorescence intensity at pH=5 in aqueous solutions and a decrease in fluorescence intensity upon binding of paramagnetic metal cations (Mn 2+ (d 5 ), Co 2+ (d 7 ), Cu 2+ (d 9 )). The decrease in fluorescence intensity may be attributed to the paramagnetic effect of metal cations to deactivate the excited state by the nonradiative quenching process. The benzylic nitrogen was found to play an important role in changing fluorescence intensity. From the observed linear Stern-Volmer plot and the fluorescence lifetime independence of the presence of metal ions, it was inferred that the chelation enhanced fluorescence quenching (CHEQ) mechanism in the system is a ground state static quenching process. Enhanced fluorescence was also observed when an excess Na + ion was added to the quenched aqueous solution, and it was attributed to cation displacement of a complexed fluorescence quencher.

Thermal Distribution Analysis in Nano Cell OLED (나노 셀 OLED의 열 분포 해석)

  • Kyung-Uk Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.309-313
    • /
    • 2024
  • The key to determining the lifetime of OLED device is how much brightness can be maintained. It can be said that there are internal and external causes for the degradation of OLED devices. The most important cause of internal degradation is bonding and degradation in the excited state due to the electrochemical instability of organic materials. The structure of OLED modeled in this paper consists of a cathode layer, electron injection layer (EIL), electron transport layer (ETL), light emission layer, hole transport layer (HTL), hole injection layer (HIL), and anode layer on a glass substrate from top to bottom. It was confirmed that the temperature generated in OLED was distributed around the maximum of 343.15 K centered on the emission layer. It can be seen that the heat distribution generated in the presented OLED structure has an asymmetrically high temperature distribution toward the cathode, which is believed to be because the sizes of the cathode and positive electrode are asymmetric. Therefore, when designing OLED, it is believed that designing the structures of the cathode and anode electrodes as symmetrically as possible can ensure uniform heat distribution, maintain uniform luminance of OLED, and extend the lifetime. The thermal distribution of OLED was analyzed using the finite element method according to Comsol 5.2.

Weak Interactions Between Organic Molecules and Alkali Metal Ions Present in Zeolites Help Manipulate the Excited State Behavior of Organic Molecules

  • Ramamurthy, V.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.127-148
    • /
    • 2003
  • Zeolite is a porous highly interactive matrix. Zeolitic cations help to generate triplets from molecules that possess poor intersystem crossing efficiency. Certain zeolites act as electron acceptors and thus can spontaneously generate radical cations. Zeolites also act as proton donors and thus yield carbocations without any additional reagents. These reactive species, radical cations and carbocations, have long lifetime within a zeolite and thus lend themselves to be handled as ‘regular’ chemicals. Internal structure of zeolites is studded with cations, the counter-ions of the anionic framework. The internal constrained structure and the cations serve as handles for chemists to control the behavior of guest molecules included within zeolites.

  • PDF

PHOTOPHYSICAL AND OPTICAL PROBE PROPERTIES OF 1-(p-N,N-DIMETHYLAMINOPHENYL)-4-PHENYL-2-METHYL-1E,3E-BUTADIENE

  • Singh, A.K.;Krishna, T.S.R.
    • Journal of Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • A hitherto unknown diphenylbutadiene analog viz. 1-(p-N,N-dimethylaminophenyl)-4-phenyl-2-methyl-1E,3E-butadiene (10) has been prepared and its absorption, excitation, and fluorescent emission properties in different media including various organic solvents and aqueous bovine serum albumin (BSA) have been studied. For comparision, these properties have also been investigated for the parent diphenylbutadiene (2). Diene 10 exhibits solvent polarity/polarizability-sensitive fluorescence properties ($\lambda$$_{max}$, $\Phi$$_f$, $\tau$$_f$, K$_f$, f). It also binds to the hydrophobic domains of aqueous bovine serum albumin (BSA) with a binding constant of 3.89 x 10$^4$ M$^{-1}$. The relative fluorescence quantum yield of 10 increases, while, the fluorescence lifetime decreases with increasing concentration of-BSA. The results highlight the polar character of the singlet excited state of diphenylpolyenes and the utility of 10 as fluorescence probe for studying microenvironments of organized assemblies and biological supramolecular structures.

  • PDF

Fluorescence Enhancement of Ethidium Bromide by DNA Bases and Nucleosides

  • Pyun, Chong-Hong;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.142-147
    • /
    • 1989
  • Fluorescence enhancements of ethidium bromide (EB) by solution species of low molecular weights such as DNA base molecules and nucleosides in water are reported. The degree of enhancements was determined by intensity as well as lifetime measurements for EB fluorescence. Experiments including solvent effects on absorbance and fluorescence spectra of EB, effects of protonation on the EB absorbance spectrum, and determination of equilibrium constants for EB-DNA bases have been performed to help explain the fluorescence enhancement. The results suggest that the excited state stabilization in the hydrophobic environment, the loss of torsional/vibrational energy of amino groups, and the change in the electronic transition characteristics are all responsible for the fluorescence enhancement.

Thermodynamic and Kinetic Study on the Protonation of Free Base Tetraphenylporpyrin Derivatives in Solution

  • 유종완;유병수;정갑상;최호섭;유수창
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.439-444
    • /
    • 1998
  • The protonation of tetraphenylporphyrin (TPP) in acidic organic solutions was analyzed by acid titrimetric and temperature-dependent absorption measurements. Competition between the protonation of free base TPP $(TPPH_2)$ and the solvation of proton by near solvent molecules determines the equilibrium of the diprotonated TPP $(TPPH_4^{2+})$ formation. The diprotonated TPP exists as an ion pair complex with the acid counterions, which are found to affect the degree of red shift of the Soret band. The rotation of the phenyl rings also plays an important role in the diprotonation, as suggested by the decrease in the degree of diprotonation for the fluorophenyl TPP derivatives whose phenyl ring rotation is significantly hindered relative to normal TPP. The difference of fluorescence lifetime between $TPPH_2 \;({\pi}_{FL}=19.6\;ns)\; and\; TPPH_4^{2+} \;({\pi}_{FL}=2.1 \;ns)$ was used advantageously to measure the rate of protonation in the excited state. The protonation of TPPH2 are found to occur much slower than the diffusion of protons from bulk solution to the porphyrin ring. The monoprotonated TPP is suggested to be the transient species for the diprotonation process.

Photophysical properties of Khellin

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.341-344
    • /
    • 1987
  • The fluorescence quantum yield of khellin is sensitive to temperature and to the nature of solvents, especially the proton-donating ability in solute-to-solvent hydrogen bonding. The intersystem crossing quantum yields are 0.4 and 0.15 in acetonitrile and ethanol, respectively. The fluorescence quantum yields in ethanol and isopentane at 77 K are 0.61 and 0.07, respectively, both of which are much larger than the values at room temperature. The phosphorescence lifetime is relatively long and decreases with decreasing solvent polarity. The phosphorescence to fluorescence quantum yield ratio is very small and remains unchanged in various solvents. The results suggest that internal conversion is an important decay channel of the excited singlet state of khellin, especially in the hydrogen-bonding hydroxyl solvents.