• 제목/요약/키워드: Excited state

검색결과 463건 처리시간 0.027초

Excitation Energy Migration in Multiporphyrin Arrays

  • Hwang, In-Wook;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.19-31
    • /
    • 2005
  • During the last decade, the exploration of nanoscale device and circuitry based on molecules has gained increasing interest. In parallel with this, considerable effort is being devoted to the development of molecular photonic/electronic materials based on various porphyrin arrays. This involves light as an input/output signal and excitation energy migration as a mechanism for signal transmission. Absorption of a photon at the light collector end of the porphyrin array yields the excited state, which migrates among the intervening pigments until reaching the emitter, whereupon another photon is emitted. As a consequence, it is relevant to understand the excitation energy transfer (EET) processes occurring in various forms of porphyrin arrays for the applications as artificial light harvesting arrays and molecular photonic/electronic wires. Since the excitonic (dipole) and electronic (conjugation) couplings between the adjacent porphyrin moieties in porphyrin arrays govern the EET processes, we have characterized the EET rates of various forms of multiporphyrin arrays (linear, cyclic, and box) based on various time-resolved spectroscopic measurements. We believe that our observations provide a platform for further development of molecular photonic/electronic materials based on porphyrin arrays.

A linear model for structures with Tuned Mass Dampers

  • Ricciardelli, Francesco
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.151-171
    • /
    • 1999
  • In its 90 years of life, the Tuned Mass Damper have found application in many fields of engineering as a vibration reducing device. The evolution of the theory of TMDs is briefly outlined in the paper. A generalised mathematical linear model for the analysis of the response of line-like structures with TMDs is presented. The system matrices of the system including the TMDs are written in the state space as a function of the mean wind speed. The stability of the system can be analysed and the Power Spectral Density Function of any response parameter calculated, taking into account an arbitrary number of modes of vibration as well as an arbitrary number of TMDs, for any given PSDF of the excitation. The procedure can be used to optimise the number, position and mechanical properties of the damping devices, with respect to any response parameter. Due to the stationarity of the excitation, the method is well suited to structures subjected to the wind action. In particular the procedure allows the calculation of the onset galloping wind speed and the response to buffeting, and a linearisation of the aeroelastic behaviour allows its use also for the evaluation of the response to vortex shedding. Finally three examples illustrate the suggested procedure.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Infrared-to-Visible Up-conversion in Er-Pr-Yb Triply Doped Oxyfluoride Glass Ceramics

  • Song, Su-A;Lim, Ki-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.778-783
    • /
    • 2016
  • We synthesized $Er^{3+}-Yb^{3+}$, $Pr^{3+}-Yb^{3+}$, and $Er^{3+}-Pr^{3+}-Yb^{3+}$ -doped oxyfluoride glass ceramics containing $CaF_2$ nanocrystals by proper thermal treatments. Spectral characteristics of down- and up-converted emissions in three kinds of glass ceramics under 365-nm and 980-nm excitations were compared and explained by cross relaxations, excited-state absorptions, and energy-transfer processes between different ions. The huge reduction of up-conversion emission in the triply doped glass ceramics under 980-nm excitation compared to the $Er^{3+}-Yb^{3+}$ codoped one was explained by the split pump power and the direct energy transfer from $Er^{3+}$ to $Pr^{3+}$ ions. Increasing $Yb^{3+}$ concentration from 2% to 10% in the triply doped glass ceramics showed more than quadratic enhancement of the absorbed power, and we explained it by the enhanced energy-transfer efficiency from $Yb^{3+}$ to $Er^{3+}$ ions. We also observed enhanced up-converted emissions of $Er^{3+}$ and $Pr^{3+}$ ions in three kinds of glass ceramics under simultaneous excitation at 980 nm and 1550 nm, and suggested detailed up-conversion mechanisms.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션 (Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas)

  • 손채화
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권12호
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

UV/TiO2/H2O2 시스템을 이용한 매립지(埋立地) 침출수(浸出水) 처리(處理) (Treatment of Landfill Leachate by UV/TiO2/H2O2 System)

  • 김성준;문정의
    • 상하수도학회지
    • /
    • 제11권4호
    • /
    • pp.133-141
    • /
    • 1997
  • In order to treat the landfill leachate, $UV/TiO_2/H_2O_2$ system connected with biological treatment was investigated, and proper pretreatment methods were examined to reduce the load on the system considering economical and technical efficiency. It was more profitable to put $H_2O_2$ into the system in the early stage for the sample which was treated with $H_2SO_4$ to decrease alkalinity and with $FeCl_3-6H_2O$ flocculation. Because the required reaction time run up by increasing $H_2O_2$ input amount, though the COD was reduced slightly, the optimal $H_2O_2$ input amount should be determined for the desired COD and the economical efficiency. The appropriate way to get the lowest COD in the shortest time was the method to treat the sample which was controlled to pH 3.5 after adjusting to pH 12 and put 500 ppm $H_2O_2$ into the system. In that case, to increase $H_2O_2$ input amount was not profitable for the system efficiency. The sufficient photocatalytic excited time was required to reduce the photocatalytic decomposition time for the sample which was gone through the alkali state.

  • PDF

Halogen Etching of Si(100)-2x1 : Dependence on Vacancy Creation and Surface Concentration

  • Nakayama, Koji
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.146-146
    • /
    • 2000
  • We have studied the etching of Si(100)-2xl by Cl and Br, using scanning tunneling microscopy to obtain morphological information that can be related to reaction and desorption pathways. Clean surfaces were exposed to molecular halogens at room temperature to produce well-defined chemisorption structures for coverages in the range 0.2-1.0 ML. Heating to 750-750 K induced etching by thermal desorpton. Analysis of the halogen concentration before and after heating indicated that the rates of desorption for SICl2 or SiBr2 were greatest for intermediate coverages and that etching was suppressed as saturation was reached. Hence, desorption is not simply proportional to the concentration of species that can form adsorbed precursors SiX2(a). Instead, it is directly coupled to the creation of monomer vacancies adjacent to the SiX2 (a) unit because this increases the lifetime of the excited state and increases the likelihood of its desorption. Increasing the surface concentration of halogens reduces the rate of vacancy formation. We show that these rates are also affected by a re-dimerization process in the high temperature Br-stabilized Si(100)-3xl reconstruction that increases the likelihood of siBr2(a) formation and enhances its desorption. I will also discuss recent result for F etching on Si(100)-2xl.

  • PDF

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

마찰 기인 2자유도계 시스템의 자려진동에 대한 댐핑의 영향 (The Effects of Damping on the Limit Cycle of a 2-dof Friction Induced Self-oscillation System)

  • 조용구;신기홍;이유엽;오재응
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.502-509
    • /
    • 2002
  • A two-degree of freedom model Is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the dusk of the brake. The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this Paper, not only titre existence of the limit cycle but also the sloe of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency[(1) Two masses with same natural frequencies, (2) with different natural frequencies] . the propensity of limit cycle Is discussed In detail. The results show an important fact that it may make the system worse when too much damping Is present in the only one part of the masses.