• Title/Summary/Keyword: Excited amplitude

Search Result 109, Processing Time 0.025 seconds

Combustion Control and Symptom Detection on Self-excited Combustion Oscillation (자려 연소진동에 관한 연소제어와 징후의 검출)

  • Yang Young-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1111-1122
    • /
    • 2004
  • An idea to suppress the self-excited combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined and the unsteady combustion was driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by this method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillation. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure For the purpose, the unique measures to observe the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals, have been proposed.

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

The Characteristics of Fluid Flow in a Channel by Oscillating Vortex Generator (가진되는 와류발생기에 의한 채널내의 유동 특성)

  • Bang, Chang-Hoon;Kim, Jung-Soo;Choo, Hong-Lok
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.1-7
    • /
    • 2007
  • A problem of a unsteady time-dependent flow in a channel is of practical importance and widely considered in the design of devices such as heat exchangers, duct, and electronic equipments. The characteristics of fluid flow in channel with oscillating vortex generator was investigated experimentally. The main object of this study was to investigate the effect of the excited frequency, the excited amplitude, and Reynolds numbers on the generated frequency. Flow patterns were visualized using smoke generator and generated frequencies were measured using hot wire anemometer. When the excited frequency is increased, excited amplitude decreased and Reynolds number increased, the strength of PSD of generated frequency is decreased.

Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder

  • Wang, Qi;Wu, Bo;Liao, Hai-li;Mei, Hanyu
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • This paper presents a study on amplitude-dependent self-excited aerodynamic forces of a 5:1 rectangular cylinder through free vibration wind tunnel test. The sectional model was spring-supported in a single degree of freedom (SDOF) in torsion, and it is found that the amplitude of the free vibration cylinder model was not divergent in the post-flutter stage and was instead of various stable amplitudes varying with the wind speed. The amplitude-dependent aerodynamic damping is determined using Hilbert Transform of response time histories at different wind speeds in a smooth flow. An approach is proposed to extract aerodynamic derivatives as nonlinear functions of the amplitude of torsional motion at various reduced wind speeds. The results show that the magnitude of A2*, which is related to the negative aerodynamic damping, increases with increasing wind speed but decreases with vibration amplitude, and the magnitude of A3* also increases with increasing wind speed but keeps stable with the changing amplitude. The amplitude-dependent aerodynamic derivatives derived from the tests can also be used to estimate the post-flutter response of 5:1 rectangular cylinders with different dynamic parameters via traditional flutter analysis.

Vibration Analysis of an Amplitude Proportional Friction Damper System (변위비례식 마찰댐퍼 시스템의 진동해석)

  • 박동훈;최명진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.171-179
    • /
    • 2003
  • An Amplitude Proportional Friction Damper (APFD) is considered in order to improve the characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. A free vibration analysis on the 1-DOF system has made to demonstrate the characteristics of the APFD system. The results show that APFD system has similar damping characteristics to the viscous damper. Also, the solution for the response of a base-excited system with APFD is developed through the application of a Fourier series to represent the frictional force of APFD. It is assumed that no stick-slips occur during any portion of the steady-state oscillation.

A Visual Investigation of Coherent Structure Behaviour Under Tone-Excited Laminar Non-Premixed Jet Flame (음향 가진된 층류 비예혼합 분류 화염에서 거대 와류 거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.275-285
    • /
    • 2003
  • A visualization study on the effect of forcing amplitude in tone-excited jet diffusion flames has been conducted. Visualization techniques are employed using optical schemes. which are a light scattering photography. Flame stability curve is attained according to Reynolds number and forcing amplitude at a fuel tube resonant frequency. Flame behavior is globally grouped into two from attached flame to blown-out flame according to forcing amplitude: one sticks the tradition flame behavior which has been observed in general jet diffusion flames and the other shows a variety of flame modes such as the flame of a feeble forcing amplitude where traditionally well-organized vortex motion evolves, a fat flame. an elongated flame. and an in-burning flame. Particular attention is focused on an elongation flame. which is associated with a turnabout phenomenon of vortex motion and on a reversal of the direction of vortex roll-up. It is found that the flame length with forcing amplitude is the direct outcome of the evolution process of the formed inner flow structure. Especially the negative part of the acoustic cycle under the influence of a strong negative pressure gradient causes the shapes of the fuel stem and fuel branch part and even the direction of vortex roll-up to dramatically change.

Effects of Flow Excitation on the Nitrogen Oxide Emission of a Non-Premixed Flame (유동장 자극이 화염의 질소산화물 배출에 미치는 영향)

  • 이기만
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • The effects of external flow excitation with various frequencies and amplitudes on the flame behavior and pollution emission characteristics from a laminar jet flame are experimentally investigated. Measurements of $NO_x$ emission indices ($EINO_x$), performed in vertical lifted flame like turbulent with various exciting amplitude at a constant resonance frequency, have been conducted. It was also conducted to investigate the effects of excited frequency at a constant exciting amplitude on $NO_x$ emissions with a various frequency ranged 0 Hz to 2 KHz. From the vertical lifted turbulent flame of the excited jet with resonance frequency by strong excitation was shown that the dependence of $NO_x$ emission could be categorized into three groups Group I of long flame length with high disturbances yielding high $NO_x$ emission, Group II of intermediate flame length and relative narrow flame volume with low disturbance yielding low $NO_x$ emission and Group III of long flame length and large flame volume with high time & space disturbances behaviour yielding high $NO_x$ emission.

NONLINEAR ANALYSIS OF SELF-EXCITED VIBRATION IN WHEELED TRACTOR VEHICLE'S DRIVELINE

  • Li, X.H.;Zhang, J.W.;Zeng, C.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.535-545
    • /
    • 2006
  • A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to have a limit cycle by using $Poincar\'{e}-Bendixson$ Annulus Theorem when two inequalities were satisfied. Because the two inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of the vehicle is obvious.

Study on the frequency of self-excited pulse jet

  • Wang, Jian;Li, Jiangyun;Guan, Kai;Ma, Tianyou
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.206-212
    • /
    • 2013
  • Self-excited pulse jet is a specific nozzle with a closed chamber which can change a continuous jet into a pulse one. Energy of the pulse jet can be output not only unevenly but also with multifrequency. With the peak pressure of pulse jet, the hitting power would be 2~2.5 times higher than that of continuous jet. In order to reveal the correlation between the self-excited pulse frequency and nozzle diameter ratio, nozzle spacing and operating pressure, the model of 3D unsteady cavitation model has been used. We found that with the same nozzle structure parameters and the different operating pressure, the self-excited frequency and the width of peak crest are different, but the wave profiles are similar. With FFT, we also found that the less bandwidth of amplitude in low frequency range will lead to the wider wave crest of outlet velocity in its time domain, and the larger force of the strike will be gained. By studying the St of self-excite nozzle, not only the frequency of a certain nozzle can be predicted, but also a nozzle structure with a certain frequency can be designed.

Effects of van der Waals Bonding on the Collisional Dissociation of a Highly Excited Chemical Bond

  • Yoo Hang Kim;Hyung Kyu Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.397-403
    • /
    • 1991
  • Dissociation of a highly excited diatomic molecule in the Ar + Ar…$O_2$ and Ar + $O_2$ collisions is studied using trajectory dynamics procedures in the collision energy range of 0.050 to 1.0 eV. Between 0.050 and 0.2 eV, dissociation probabilities are very large for the complexed system compared to the uncomplexed system. This efficient dissociation of $O_2$ in Ar…$O_2$ is attributed to the ready flow of energy from the incident atom to the large-amplitude vibrational motion of the excited O2 via the van der Waals bond. Thermal-averaged dissociation probabilites of $O_2$ in Ar + Ar…$O_2$ near room temperature are nearly two orders of magnitude larger than those of $O_2$ in Ar + $O_2$.