• Title/Summary/Keyword: Excitatory synaptic activity

Search Result 13, Processing Time 0.028 seconds

Echinacoside, an active constituent of Herba Cistanche, suppresses epileptiform activity in hippocampal CA3 pyramidal neurons

  • Lu, Cheng-Wei;Huang, Shu-Kuei;Lin, Tzu-Yu;Wang, Su-Jane
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2018
  • Echinacoside, an active compound in the herb Herba Cistanche, has been reported to inhibit glutamate release. In this study, we investigated the effects of echinacoside on spontaneous excitatory synaptic transmission changes induced by 4-aminopyridine (4-AP), by using the in vitro rat hippocampal slice technique and whole-cell patch clamp recordings from CA3 pyramidal neurons. Perfusion with echinacoside significantly suppressed the 4-AP-induced epileptiform activity in a concentration-dependent manner. Echinacoside reduced 4-AP-induced increase in frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but it did not affect the amplitude of sEPSCs or glutamate-activated currents, implicating a presynaptic mechanism of action. Echinacoside also potently blocked sustained repetitive firing, which is a basic mechanism of antiepileptic drugs. These results suggest that echinacoside exerts an antiepileptic effect on hippocampal CA3 pyramidal neurons by simultaneously decreasing glutamate release and blocking abnormal firing synchronization. Accordingly, our study provides experimental evidence that echinacoside may represent an effective pharmacological agent for treating epilepsy.

Effects of Hesperidin Are Not Associated with Changes in Basal Synaptic Transmission, Theta-burst LTP, and Membrane Excitability in CA1 Neuron

  • Baek, Jin-Hee;Kim, Jae-Ick;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.357-362
    • /
    • 2009
  • Hesperidin, the most abundant polyphenolic compound found in citrus fruits, has been known to possess neuroprotective, sedative, and anticonvulsive effects on the nervous system. In a recent electrophysiological study, it was reported that hesperidin induced biphasic change in population spike amplitude in hippocampal CA1 neurons in response to both single spike stimuli and theta-burst stimulation depending on its concentration. However, the precise mechanism by which hesperidin acts on neuronal functions has not been fully elucidated. Here, using whole-cell patch-clamp recording, we revealed that hesperidin did not affect excitatory synaptic activities such as basal synaptic transmission and theta-burst LTP. Moreover, in a current injection experiment, spike number, resting membrane potential and action potential threshold also remained unchanged. Taken together, these results indicate that the effects of hesperidin on the neuronal functions such as spiking activity might not be attributable to either modification of excitatory synaptic transmissions or changes in membrane excitability in hippocampal CA1 neuron.

Spontaneous Electrical Activity in Cerebellar Purkinje Neurons of Postnatal Rats

  • Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.355-366
    • /
    • 1997
  • Although cerebellar Purkinje cells display spontaneous electrical activity in vivo and in slice experiments, the mechanism of the spontaneous activity generation has not been clearly understood. The aim of this study was to investigate whether cerebellar Purkinje cells of postnatal rats generate spontaneous electrical activity without synaptic inputs. Dissociated cerebellar Purkinje cells were used for reducing synaptic inputs in the present study. Cerebellar Purkinje cells with dendrites were dissociated from postnatal rats using enzymatic treatment followed by mechanical trituration. Spontaneous electrical activities were recorded from dissociated cells without any stimulus using whole-cell patch clamp configuration. Two types, spontaneously firing or quiescent, of dissociated Purkinje cells were observed in postnatal rats. Both types of cells were identified as Purkinje cells using immunocytochemical staining technique with anti-calbindin after recording. Spontaneously active cells displayed two patterns of firing, repetitive and burst firings. Two thirds of dissociated Purkinje cells displayed repetitive firing and the rest of them did burst firing under same recording condition. Repetitive firing activities were maintained even after further isolation using either physical or pharmacological techniques. Neither high magnessium solution nor excitatory synaptic blockers, AP-5 and DNQX, block the spontaneous activity. These results demonstrate that spontaneous electrical activity of isolated cerebellar Purkinje cells in postnatal rats is generated by intrinsic membrane properties rather than synaptic inputs.

  • PDF

Amygdala Depotentiation and Fear Extinction

  • Choi, Suk-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.33-45
    • /
    • 2008
  • Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy. The conditioning-induced potentiation has been shown to be maintained, at least in part, by enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction. However, a direct link between depotentiation and extinction has not yet been tested. To address this, we applied both ex vivo and in vivo approaches to rats in which fear memory had been consolidated. We found a novel form of ex vivo depotentiation; the depotentiation reversed conditioning-induced potentiation at thalamic input synapses onto the LA (T-LA synapses) ex vivo, and it could be induced only when both NMDA and metabotropic glutamate receptors were co-activated. Extinction returned the enhanced T-LA synaptic efficacy observed in conditioned rats to baseline and occluded the depotentiation. Consistently, extinction reversed conditioning-induced enhancement of surface expression of AMPAR subunits in LA synaptosomal preparations. A GluR2-derived peptide that blocks regulated AMPAR endocytosis inhibited depotentiation, and microinjection of a cell-permeable form of the peptide into the LA attenuated extinction. Our results are consistent with the use of depotentiation to weaken potentiated synaptic inputs onto the LA during extinction, and they provide strong evidence that AMPAR removal at excitatory synapses in the LA underlies extinction. The results described here are in line with previous findings. Neural activity in the LA has been shown to decrease after extinction in the rat and human. The NMDAR dependency of the depotentiation fits nicely with a large body of evidence that fear extinction depends upon amygdala NMDARs. Similarly, blockade of metabotropic glutamate recepotrs in the LA has recently been shown to attenuate fear extinction.

  • PDF

Involvement of Crosstalk Between cAMP and cGMP in Synaptic Plasticity in the Substantia Gelatinosa Neurons

  • Kim, Tae-Hyung;Chung, Ge-Hoon;Park, Seok-Beom;Chey, Won-Young;Jun, Sung-Jun;Kim, Joong-Soo;Oh, Seog-Bae
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • Substantia gelatinosa (SG) neurons receive synaptic inputs from primary afferent $A{\delta}$- and C-fibers, where nociceptive information is integrated and modulated by numerous neurotransmitters or neuromodulators. A number of studies were dedicated to the molecular mechanism underlying the modulation of excitability or synaptic plasticity in SG neurons and revealed that second messengers, such as cAMP and cGMP, play an important role. Recently, cAMP and cGMP were shown to downregulate each other in heart muscle cells. However, involvement of the crosstalk between cAMP and cGMP in neurons is yet to be addressed. Therefore, we investigated whether interaction between cAMP and cGMP modulates synaptic plasticity in SG neurons using slice patchclamp recording from rats. Synaptic activity was measured by excitatory post-synaptic currents (EPSCs) elicited by stimulation onto dorsal root entry zone. Application of 1 mM of 8-bromoadenosine 3,5-cyclic monophosphate (8-Br-cAMP) or 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) for 15 minutes increased EPSCs, which were maintained for 30 minutes. However, simultaneous application of 8-BrcAMP and 8-Br-cGMP failed to increase EPSCs, which suggested antagonistic cross-talk between two second messengers. Application of 3-isobutyl-1-methylxanthine (IBMX) that prevents degradation of cAMP and cGMP by blocking phosphodiesterase (PDE) increased EPSCs. Co-application of cAMP/cGMP along with IBMX induced additional increase in EPSCs. These results suggest that second messengers, cAMP and cGMP, might contribute to development of chronic pain through the mutual regulation of the signal transduction.

Effects of Cholecystokinin Octapeptide on Neuronal Activities in the Rat Nucleus Tractus Solitarius

  • Rhim, Hye-Whon;Park, Chan-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.275-281
    • /
    • 2000
  • Cholecystokinin (CCK) is a gastrointestinal hormone which plays an important role in satiety and gastric motility. It is also widely distributed throughout the central nervous system, where it appears to be involved in the central control of anxiety, feeding behavior and nociception. Two distinct CCK receptor types, $CCK_A$ and $CCK_B,$ have been found in the brain. Both CCK receptors coexist in the rat nucleus tractus solitarius (NTS), which is the primary center for the coordination of peripheral and central activities related to gastrointestinal, cardiovascular and respiratory functions. In order to study ionic actions of CCK on each type of receptor, we investigated the effects of CCK-8S on neurons located in the NTS of the rat using whole-cell patch-clamp recordings in brainstem slices. Application of CCK-8S, under current clamp, produced a membrane depolarization accompanied by action potential firing. This CCK-evoked excitation was dose-dependent $(10\;nM{\sim}10\;{\mu}M)$ and observed in more than 60% of NTS neurons. Under voltage clamp conditions, CCK-8S induced an inward current with a notably increased spontaneous excitatory synaptic activity. However, CCK-8S did not significantly change the amplitude of pharmacologically isolated and evoked EPSP(C)s. Using selective $CCK_A$ and $CCK_B$ receptor antagonists, we observed two different effects of CCK-8S, which suggest $CCK_A$ receptor-mediated inhibitory and $CCK_B$ receptor-mediated excitatory effects in the NTS. These results may help to explain the ability of CCK to modulate gastrointestinal and other reflex systems in the NTS.

  • PDF

The effect of μ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn

  • Kim, Yoo Rim;Shim, Hyun Geun;Kim, Chang-Eop;Kim, Sang Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.419-425
    • /
    • 2018
  • The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of ${\mu}$-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective ${\mu}$-opioid agonist, [$D-Ala^2$, $NMe-Phe^4$, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by $K^+$ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.

Endogenous glutamate enhances survival rates of neurons via activating mitochondrial signalings in hippocampal neuron (미토콘드리아 기능을 통해 내인성 글루탐산이 신경세포 생존에 미치는 영향)

  • Noh, Jin-Woo;Kim, Hye-Ji;Eun, Su-Yong;Kang, Moon-Suk;Jung, Sung-Cherl;Yang, Yoon-Sil
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • Neuronal excitotoxicity induces mitochondrial dysfunction and the release of proapoptotic proteins. Excitotoxicity, the process by which the overactivation of excitatory neurotransmitter receptors leads to neuronal cell death. Neuronal death by excitotoxicity was related to neuronal degenerative disorders and hypoxia, results from excessive exposure to excitatory neurotransmitters, such as glutamate. Glutamate acts at NMDA receptors in cultured neurons to increase the intracellular free calcium concentration. Therefore endogenous glutamate may be a key factor to regulate neuronal cell death via activating $Ca^{2+}$ signaling. For this issue, we tested some conditions to alter intracellular $Ca^{2+}$ level in dissociated hippocampal neurons of rats. Cultured hippocampal neuron were treated by KCl (20 mM), $CaCl_2$ (3.8 mM) and glutamate ($5{\mu}M$) for 24 hrs. Interestingly, The Optical Density of hippocampal neurons was increased by high KCl application in MTT assay data. This enhanced response by high KCl was dependent on synaptic $Ca^{2+}$ influx but not on intracellular $Ca^{2+}$ level. However, the number of neurons seemed to be not changed in Hoechst 33342 staining data. These results suggest that enhancement of synaptic activity plays a key role to increase mitochondrial signaling in hippocampal neurons.

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang;Yang Zhang;Qiong Du;Xinjie Zhao;Wei Wang;Qing Zhai;Ming Xiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.39-48
    • /
    • 2023
  • Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.