• 제목/요약/키워드: Excitation

검색결과 4,485건 처리시간 0.029초

입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가 (Comparison of Fatigue Damage of Linear Elastic System with Respect to Vibration Input Conditions)

  • 허윤석;김찬중
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.437-443
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random(SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가 (Comparison of fatigue damage of linear elastic system with respect to vibration input conditions)

  • 김찬중;허윤석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.340-345
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random (SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

  • PDF

층류 동축류 제트 부상화염에서 부력에 의한 자기진동과 루이스 수에 의한 자기진동 비교에 관한 실험적 연구 (Experimental Study on Comparison between Buoyancy Driven and Lewis Number Induced Self-excitations in Laminar Lifted Coflow-jet Flames)

  • 이원준;박정;권오붕;윤진한;길상인
    • 한국연소학회지
    • /
    • 제19권2호
    • /
    • pp.21-27
    • /
    • 2014
  • Experimental study in laminar propane coflow jet flames has been conducted to investigate self-excitations. For various propane mole fractions and jet velocities, two types of self-excitation were observed: (1) buoyancydriven self-excitation (hereafter called BDSE) and (2) Lewis-number-induced self-excitation coupled with (1) (hereafter called LCB). The mechanism of Lewis-number-induced self-excitation (hereafter called LISE) is proposed. When the system $Damk\ddot{o}hler$ number was lowered, LISE was shown to be launched. The LISE is closely related to heat loss, such that it can be launched in even helium-diluted methane coflow-jet flame (Lewis number less than unity). Particularly, The LISE becomes significant as the $Damk\ddot{o}hler$ number decreases and heat-loss is excessively large.

부분적 예혼합화염제어에 의한 연소 라디칼 및 NOx 배출물 특성 (Combustion Radicals and NOx Emissions Characteristics by Control of Partially Premixed Flames)

  • 김태권;장준영
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.561-569
    • /
    • 2002
  • This paper presents an investigation on $C_2$, CH, OH radicals and NOx emissions in partially premixed flames with acoustic excitation. The radicals are visualized by the digital image technique with optical filters and ICCD camera while NOx emissions are determined by a chemiluminescent detection(NOx analyser). The measurements are made in flames with an overall equivalence ratio (${\phi}_o$) 0.5 and a center tube equivalence ratio(${\phi}_c$) varing from 1.1 to 5.0 for a constant fuel flow rate. In the case of excitation, the visual shape of the flame is changed from laminar to turbulent-like flames. Images of $C_2$, CH, and OH radicals resemble those of the flame appearances as the excitation phase is varied, and the radicals generated at the upstream are convected toward the downstream. It is inferred that the flame characteristics is affected by the flow characteristics of air-fuel mixture. In the case of acoustic excitation, OH radicals are much increased relative to unexcitation. From the radicals and flame visualization under acoustic excitation, the reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.

가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구 (NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL)

  • 정재환;이창열;윤현식;김효주
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.

층류 동축류 제트 부상화염에서의 자기진동에 관한 연구 (A Study on Self-excitation in Laminar Lifted Coflow-jet Flames)

  • 반규호;이원준;박정;김태형;박종호
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.43-51
    • /
    • 2015
  • A study on laminar jet flames in coflow air diluted with helium has been conducted to investigate self-excitations for various propane mole fractions and nozzle exit velocities. The stability map was represented as a function of nozzle exit velocity and fuel mole fraction for propane. The results show that two types of self-excitation were observed : (1) buoyancy-driven self-excitation (hereafter called BDSE) and (2) Lewis-number induced-self-excitation coupled with (1) (hereafter called LCB) near extinction limit for 9.4 mm nozzle diameter. It was shown that with 0.95 mm nozzle diameter, Lewis-number-induced self-excitation (hereafter LISE) and BDSE could be separated. The differences between the two self-excitations were shown and discussed.

선박에서 진동제어를 위한 디젤엔진 기진력의 최적화 (Optimization of Excitation Forces Produced by the Diesel Engine for Vibration Control in Ships)

  • 박정근;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1018-1025
    • /
    • 2003
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method, the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60% of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.

  • PDF

진동제어를 위한 엔진 기진력의 최적화 (Optimization of Engine Excitation Forces for Vibration Control)

  • 정의봉;유완석;박정근
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.709-717
    • /
    • 2004
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method. the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60 % of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.

실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구 (A Study on an AVR Parameter Tuning Method using Real-lime Simulator)

  • 김중문;문승일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권2호
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.