• Title/Summary/Keyword: Exciplex Fluorescence Technique

Search Result 12, Processing Time 0.022 seconds

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

The Spray Characteristics of Swirl and Slit Injector to DISI Engine Using LIEF and Mie-scattering Method (LIEE와 Mie 산란 방법을 이용한 직분식 가솔린 엔진의 스월 및 슬릿 인젝터의 분무 특성)

  • Lee Kihyung;Hwang Kyumin;Lee Changhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.356-367
    • /
    • 2005
  • The spray characteristics of DISI injector have a great role in gasoline engine efficiency and emission. Thus, many researchers have studied to investigate the spray characteristics of swirl and slit injectors that are used in a DISI engine. In this study, we tried to provide spray parameters, which affect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_{b}\;and\;t_{c}$ to investigate the break up mechanism of test injectors and obtained $C_{v}$ to evaluate the spray characteristics. As the ambient pressure increases in case of slit injector, $C_{v}$ decreases. The laser-induced exciplex fluorescence (LIEF) technique, which is based on spectrally resolved two-color fluorescent emissions, has applied to measure the liquid and vapor phases for on evaporating spray simultaneously. The TMPD/naphthalene proposed by Melton is used as a dophant to detect exciplex signal. The temporal and spatial distribution of liquid and vapor phases during the mixture formation process was measured by this technique. In the LIEF technique, the vapor phase is detected by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. From this experiment, we found that the spray area of the vapor phase is increased with elapsed time after injection and the area of liquid is decreased when the ambient pressure is 0.1MPa. However, the area tends to increase until the end of injection when the ambient pressure is 1.0MPa.

An Experimental Study on the Analysis of Liquid/Vapor Phase in GDI Spray (직접 분사식 연료 분무에서의 기.액상 분리 계측에 관한 연구)

  • Jang, S.H.;Kim, J.H.;Park, K.S.;Jin, S.H.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.57-65
    • /
    • 2000
  • For this research an extension of the LIF technique that the LIEF(Laser Induced Exciplex Fluorescence) technique has been used LIEF technique is the unique method to allows the visualization of fuel vapor phase and liquid phase individually by capturing each signals of them. In this work performed that the basic procedure for advanced LIEF technique using TEA and benzene as dopants md high power KrF excimer laser to excite the dopants. Iso-octane is used as the fuel because it does not absorb light at the laser wavelength. The boiling point of benzene and TEA are $81^{\circ}C\;and89^{\circ}C$, respectively, in comparison to $99^{\circ}C$ for iso-octane. It is observed that the behavior and distribution of high pressed fuel injection from various test condition. The injection pressure is set as 3MPa. and 5MPa. And the ambient pressure of test chamber is atmospheric pressure and 1MPa, the ambient temperature of chamber is room temperature, $300^{\circ}C\;and\;500^{\circ}C$ to imitate the condition of GDI engine cylinder.

  • PDF

Basic Study on the Application of a Computational Technique to Behavior Characteristics Analysis of the Evaporative Diesel Spray (증발디젤분무의 거동특성해석을 위한 계산기법 적용에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-12
    • /
    • 2010
  • In this study, an analysis of evaporative diesel spray and an usefulness of a general-purpose program, ANSYS CFX release 11.0, are investigated through the comparison and investigation of the experimental results carried out under an evaporative field, in which there is phase transition, by an exciplex fluorescence method and the results analyzed by the CFX program. The diesel fuel called n-Tridecane, $C_{13}H_{28}$, is injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant volume chamber under a high temperature and pressure. In the same condition as the experimental condition, the analysis was carried out. Both results of the spray tip penetration were almost coincident at each time. The results have validated the usefulness of this analysis. As a result, if the ambient pressure is high, the spray tip penetration will be shortened and move toward the nozzle exit.

Average Droplet Size Distribution of a GDI Spray by Simultaneous Fluorescence/Scattering Image Technique (형과/산란광 동시 측정에 의한 GDI 분무의 평균 입경 분포에 관한 연구)

  • Gwak, Su-Min;Ryu, Gyeong-Hun;Choe, Dong-Seok;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.868-875
    • /
    • 2001
  • The objective of this study is to investigate the average droplet size distributions of a GDI spray by simultaneous fluorescence/scattering image technique. GDI engine is recently very popular because of high engine efficiency and low emissions. However, the injectors must have good spray characteristics because the fuel is directly injected into the cylinder. The fuel mixtures used in this study were 2% of fluorobenzene, 9% of DEMA(diethyl-methyl-amine) and 89% of hexane by volume. The system for obtaining 2-D fluorescence/scattering images of fuel spray was constituted of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the fluorescence to the scattering intensities, SMD distributions were obtained. SMD measured by the technique was compared with that obtained by PDA. It was found that average droplet size was bigger at spray center in the early stage of injection and at the outer periphery of the spray in the late stage of injection.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique (LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구)

  • Kim, Y.R.;Kim, M.S.;Cho, H.;Min, K.D.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF

Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry (벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF

Effects of Piston Shapes and Intake Flow on the Behavior of Fuel Mixtures in a GDI Engine

  • Kang, Jeong-Jung;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2027-2033
    • /
    • 2003
  • The purpose of this study is to investigate the stratification of fuel vapor with different in-cylinder flow, piston cavity and injection timings in an optically accessible engine. Three different piston shapes that are F(Flat), B(Bowl) and R(Re-entrance) types were used. The images of liquid and vapor fuel were captured under the motoring condition using Laser Induced Exciplex Fluorescence technique. As a result, at early injection timing of 270 BTDC, liquid fuel was evaporated faster by tumble flow than swirl flow, where most of fuel vapor were transported by tumble flow to the lower region and both sides of cylinder for the F-type piston. At late injection timing of 90 BTDC, tumble flow appears to be moving the fuel vapor to the intake side of the cylinder, while swirl flow convects the fuel vapor to the exhaust side. The concentration of mixture in the center region was highest in the B-type piston, while fuel vapor was transported to the exhaust side by swirl flow in F and R-type pistons. At the injection timing of 60 BTDC, the R-type piston was better for stratification due to a relatively smaller bowl diameter than the others.

Numerical Study on Wall Impingement Process of GDI Spray According to Wall Cavity Angle (벽면 캐비티 각에 따른 GDI 분무의 벽 충돌 과정에 대한 수치적 연구)

  • Shim, Young-Sam;Kim, Duck-Jool;Choi, Gyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.971-978
    • /
    • 2007
  • A spray-wall impingement process of a hollow-cone fuel spray from the high-pressure swirl injector in the Gasoline Direct Injection (GDI) engine were experimented and calculated at various wall geometries. The Linearized Instability Sheet Atomization (LISA) & the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model and the Gosman model were applied to model the breakup and the wall impingement process of the hollow-cone fuel spray. The numerical modelings were implemented in the modified KIVA code. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental results by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution and the ambient gas velocity field, which are generally difficult to obtain by the experimental methods, were also calculated and discussed. It was found that the radial distance after wall impingement and Sauter Mean Diameter (SMD) decreased with increasing a cavity angle.