• Title/Summary/Keyword: Excimer lamp

Search Result 6, Processing Time 0.024 seconds

Ultraviolet-emissive BaSiO3:Ce3+ Phosphor for VUV Excimer Lamp

  • Lee, Jugyeong;Afandi, Mohammad M.;Kim, Jongsu;Heo, Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Ultraviolet (UVA)-emissive BaSiO3:Ce3+ phosphor was astonishingly reproducible by vacuum-sintering at a high temperature through a simple solid-state reaction method. It was conveniently formed in BaSiO3 phases. The compound showed the UVA emission and the UV-VUV excitation due to 5d-4f transitions from Ce3+ ions: emission peak at 380 nm with a 56 nm width. Its temperature dependence and vacuum UV excitability were examined for practical application as an excimer discharge lamp, which showed the high thermal stability (80% at 100℃) and the strong VUV excitations at 145 nm and 172 nm.

Fabrication and Property of Excimer Lamp Coated with Green-emitting Zn2SiO4:Mn2+ Phosphor Film (녹색발광 Zn2SiO4:Mn2+ 형광체가 코팅된 엑시머 램프의 제작 및 특성)

  • Kang, Busic;Jung, Hyunjee;Jeong, Yongseok;Son, Semo;Kim, Jongsu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.106-109
    • /
    • 2022
  • The green-emitting Zn2SiO4:Mn2+ phosphor film was evaluated in a xenon excimer lamp. The phosphor film with 2 ㎛ thick was formed of monolithic structure on the inner side of quartz through a long-time annealing process of coated ZnO solution doped with Mn2+ ion and SiO2 of quartz tube. The coated quartz was filled with 100 torr of xenon gas, and simultaneously both sides was melt and sealed. The xenon-field quartz tube was discharge by applying the voltage of 15 kV with a frequency of 26 kHz, and emitted the glow with dominant peak at 172 nm. The vacuum ultraviolet excited the inner-side coated Zn2SiO4:Mn2+ phosphor film, which emitted the pure and strong green light.

Voltage Source Resonant Inverter for Excimer Gas Discharge Load

  • Koudriavtsev Oleg;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.89-92
    • /
    • 2001
  • Silent gas discharge method has been widely applied for ozone production, ultraviolet light and UV laser generation. Since ozone and ultraviolet applications have tendency to spread widely in industry, the development of efficient and low-cost power supply for such systems is a task of great impotency. This paper introduces high-frequency inverter type mode power supply designed for ozone generation tube and ultraviolet generation excimer lamp and considerations on this inverter and pulse density modulation control strategy applied in it.

  • PDF

Voltage Source Resonant Inverter for Excimer Gas Discharge Load

  • Koudriavtsev, Oleg;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.206-211
    • /
    • 2002
  • Silent gas discharge method has been widely applied fur ozone production, ultraviolet light and UV laser generation. Since ozone and ultraviolet applications have tendency to spread widely in industry, the development of efficient and low - cost power supply for such systems is an important task at present. This paper introduces high-frequency inverter type mode power supply designed fur ozone generation tube and ultraviolet generation excimer lamp and considerations on the design of the inverter and pulse density modulation control strategy applied in it.

Current-Source Pulse Density Modulated Parallel Resonant Inverter with A Single Resonant Snubber and Its Unique Application

  • Wang Y.X.;Koudriavtsev O.;Konishi Y.;Okuno A.;Nakaoka M.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.261-265
    • /
    • 2001
  • In this paper, a current-source type parallel indudor compensated load resonant high-frequency soft switching inverter using IGBTs for driving the newly-produced silent discharge type ozone generating tube and excimer lamp for UV generation which incorporate a single switched capacitor resonant snubber between the port in DC busline side is presented, together with its pulse modulated unique output power regulation characteristics.

  • PDF

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF