• 제목/요약/키워드: Exchangeable metal

검색결과 120건 처리시간 0.02초

매향리 내륙 사격장 토양의 중금속 오염 분포 (Heavy Metal Distribution in Soils from the Maehyang-ri Inland Shooting Range Area)

  • 이준호;박갑성
    • 한국물환경학회지
    • /
    • 제24권4호
    • /
    • pp.407-414
    • /
    • 2008
  • This study was conducted to evaluate the heavy metal contamination in the soils of Maehyang-ri inland shooting range area. The texture of the Maehyang-ri inland shooting range soil was sandy. Extraction of heavy metals reached quasi-equilibrium within 6 hours using shaking with 0.1 N HCl. 95% and 94% of extraction efficiency was observed for Cu and Pb in the Maehyang-ri shooting range soils, respectively. And Cu and Pb contamination of level of the T-1 region soil was $114.4{\pm}5.7mg/kg$ and $362.3{\pm}20.5mg/kg$. This may be due to the effects of mineralogical factor, soil particle size and un-residual fractions such as exchangeable, carbonate, Fe-Mn oxide and organic+sulfide.

Heavy metals leaching behavior and ecological risks in water and wastewater treatment sludges

  • Wuana, Raymond A.;Eneji, Ishaq S.;Ugwu, Ezekiel C.
    • Advances in environmental research
    • /
    • 제6권4호
    • /
    • pp.281-299
    • /
    • 2017
  • Single (0.005 M DTPA), sequential (six-step) and kinetic (0.05 M EDTA) extractions were performed to assess Cd, Cr, Cu, Ni, Pb, and Zn mobilization and their potential ecological risks in Abuja (Nigeria) water (WTS) and wastewater (WWTS) treatment sludges. Total metal levels (mg/kg) in WTS and WWTS, respectively were: Cd(3.67 and 5.03), Cr(5.70 and 9.03), Cu(183.59 and 231.53), Ni(1.33 and 3.23), Pb(13.43 and 17.87), Zn(243.45 and 421.29). DTPA furnished metal extraction yields (%) in WTS and WWTS, respectively as: Cd(11 and 6), Cr (15 and 7), Cu(17 and 13), Ni(23 and 3), Pb(11 and 12), and Zn(37 and 33). The metals were associated with the soluble/exchangeable, carbonate, Mn/Fe-oxide, organic matter and residual forms to varying degrees. Kinetic extractions cumulatively leached metal concentrations akin to the mobilizable fractions extracted sequentially and the leaching data fitted well into the Elovich model. Metal mobilities were concordant for the three leaching procedures and varied in the order:WTS>WWTS. Calculated ecological risk indices suggested moderate and considerable metal toxicity in WTS and WWTS, respectively with Cd as the worst culprit. The findings may be useful in predicting heavy metals bioavailability and risks in the sludges to guide their disposal and use in land applications.

Distribution of Heavy Metal Content in Plants and Soil from a Korean Shooting Site

  • Baek, Kyung-Hwa;Kim, Hyun-Hee;Park, Jin-Sung;Bae, Bumhan;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • 제27권4호
    • /
    • pp.231-237
    • /
    • 2004
  • In this research we determined the levels of heavy metals in soil and metal-accumulating plants from a D military shooting site in the Kyungkido district of Korea. The data obtained may be useful in the development of methods for the efficient phytoremediation of contaminated soil. The total Cd, Cu, Pb, and Zn concentrations in the soil were found to be 1.67-5.04 mg/kg, 52.51-106.26 mg/kg, 37.24-90.32mg/kg, and 111.45-188.19mg/kg, respectively. These results show that the soil is contaminated with Cd and Cu, and this contamination is particularly severe in the case of Cd because of its high bioavailability (25-57% of the total metal in the soil is exchangeable). The high concentrations of heavy metals in the shoots of Persicaria thunbergii and Artemisia princeps var. orientalis indicate that these plants (all perennial herbs) accumulate heavy metal efficiently. Further, these plants were found to contain more Cd in its shoots (>60% of the total metal found in the plant) than any other plant; these results indicate that these native species are particularly suited to use in Cd phytoextraction.

아연광산 주변 논토양에서 토양(土壤) 화학성(化學性)이 중금속의 형태(形態) 및 그 분포(分布)에 미치는 영향 (Effects of Soil Chemical Properties on the Distribution and Forms of Heavy Metals in Paddy Soils near Zine Mines)

  • 현해남;유순호
    • 한국토양비료학회지
    • /
    • 제24권3호
    • /
    • pp.183-191
    • /
    • 1991
  • 본 연구는 아연광산(亞鉛鑛山) 주변의 논토양에 존재하는 Cd, Pb, Cu 및 Zn의 형태별 함량을 조사하여 중금속간의 분포(分布) 특성(特性)을 검토하였으며, 토양 화학적 성질이 이들의 형태별 함량 분포에 미치는 영향을 밝히기 위하여 수행되었다. 그 결과를 요약하면 다음과 같다. 1. 공시토양에 존재하는 Cd, Pb, Cu 및 Zn은 주로 해화물-잔류태(殘留態)로 존재하였으며, Cd와 Pb의 산화물(酸化物)-탄산염태(炭酸鹽態)와 Cu의 유기복합태(有機複合態)의 함량도 높은 편이었다. Pb와 Cu의 치환태는 소량 존재하였으며, 수용태는 Zn만 검출되었다. 2. 치환태의 분포비가 높은 토양일수록 산화물-탄산염태 및 황화물-잔류태의 분포비가 낮았다. 3. 토심이 깊어질수록 치환태 Cd 및 Zn의 분포비(分布比)는 낮아지고 항화물-잔류태의 분포비가 높아졌으며, Pb는 산화물-탄산염태의 분포비가 낮아지고 황화물-잔류태의 분포비가 높아졌다. 4. Cu는 유기물이 많은 토양일수록 Cu의 유기복합태 함량이 많았으며, Cd, Pb 및 Zn의 유기복합태는 유기물함량과 관계가 없었다. 치환태 Cd, Pb 및 Zn의 분포비는 pH가 높은 토양일수록 낮았으나, 이들의 산화물-탄산염태과 황화물-잔류태의 분포비의 합은 높았다. Pb의 산화물-탄산염태 및 황화물-잔류태의 분포비는 공시토양의 pH 전범위에서 Cd 및 Zn에 비하여 높았다.

  • PDF

구봉광산 일대 광미, 하상퇴적물 및 주변 토양에서의 중금속 원소의 존재 형태 (Chemical forms of Heavy Metal Elements in Mine Wastes, Stream Sediments and Surrounding Soils from the Gubong Mine, Korea)

  • 김종옥
    • 자원환경지질
    • /
    • 제32권3호
    • /
    • pp.261-271
    • /
    • 1999
  • Mining activity in the Gubong gold mine started in 1908 and lasted up to recent days. Heavy metals derived from the activity may be porentially toxic to human life and envirinment of this area. Because metal toxicity depends on chemical associations into five operationally defined groups: exchangeable, carbonate, reducible, oxidizable, and residual fractions, and the Most of heavy metals have significant little significance (alomost<1%). And Cu is mainly associated with the oxidizable from. Total concentration of heavy metals, pH, and mineralogy affect the chemical forms of the metals. Heavy metal concentrations. Significant amounts of metal elements (5∼65.1% in Pb, 6.2∼39.7% in Zn, 8.7∼54.7% in Cd, and 3.6∼24.7% in Cu) were present in carbonate form from mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb bearing carbonate mineral) in mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb beraring varbonate mineral) in mine waste support this result. Areas with high corbonate bound from would have higher potentoal conamination, however, because elements of carbonate bound forms are easily mobilized under lower pH conditions in the surface envionments due to acid to rain soil acidification.

  • PDF

동전기법에 의한 광산퇴적토의 중금속 제거 특성 (Electrokinetic Removal and Removal Characteristics of Heavy Metals from Metal-Mining Deposit)

  • Lee, Chang-Eun;Shin, Hyun-Moo
    • 한국환경과학회지
    • /
    • 제12권2호
    • /
    • pp.227-236
    • /
    • 2003
  • Electrokinetic remediation technique offers the opportunity to extract heavy metals from soils with high plasticity. The experiment demonstrated the applicability of electrokinetic remediation on metal-mining deposit and the decision of the enhancement method for four kinds of bench-scale studies. According to the sequential extraction of heavy metals in the "I" mining deposit, Pb and Cu were mostly associated with residual fraction and Zn and Cd were associated with water soluble and residual fraction. Therefore, removable fractions by electrokinetic technology was determined by the sum of the fraction of water soluble and exchangeable, which is Cu : 19.53%, Pb : 1.42%, Cd : 52.82%, Zn : 57.28%, respectively. When considering electrical potential, volume of effluent, soil pH, and eliminated rate of contaminant, results determined by sum of each weight were Citric aic+SDS (13) > 0.1N $HNO_3$ (10) > HAc (8) > DDW (4). Therefore, citric acid and SDS mixed solution was determined the best enhancing agent for the remediation of metal mining deposit.g deposit.

강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가 (Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province)

  • 김정대
    • 대한환경공학회지
    • /
    • 제27권6호
    • /
    • pp.626-634
    • /
    • 2005
  • 본 연구에서는 강원도내 4개의 폐금속광산에서 발생되는 광미와 주변 토양의 중금속 오염현황 및 오염도를 평가하였다. 광미와 주변 토양의 오염정도는 총 중금속농도 기준으로 원동>제2연화>신예미${\fallingdotseq}$상동 순이었으며, 이들 광미는 배경토양 및 Kloke 값보다 각각 $1.2{\sim}78.2$$1.1{\sim}80.6$배가 높은 농도로서 주변 토양을 오염시키고 있었다. 광미내 대다수 중금속의 화합물형태는 잔류성이 대부분이었다. 비잔류형태 화합물에서는 상당부분이 환원성과 산화성이어서 장기간에 걸쳐 산화환경조건에 따라 중금속이 유출될 것으로 보이며 특히, 제2연화의 Cd은 교환성과 탄산염 화합물이 쉽게 유출되어 단기간에 주변 환경을 오염시킬 가능성이 클 것으로 판단된다. 우리나라 토양오염기준치의 초과여부 검토결과 많은 시료에서 토양환경보전법의 우려기준 및 대책기준 이상인 것으로 나타나 이에 대한 처리대책이 필요하였다. PI에 의한 오염도평가에서는 4개의 광산지역 모두 1.0 이상보다 훨씬 높아 오염정도가 심각하였으며 복원시 최우선 광산은 원동이었다. 또한, DI에 의한 복원수준정도 평가결과에서 원동광산은 단기간에 유출 가능한 교환성부터, 나머지 광산은 중 장기간에 걸쳐 유출되는 환원성부터 우선적으로 제거해야 할 것으로 나타났다.

단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화 (Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed)

  • 고일하;김정은;김지숙;박미선;강대문;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.

비 무기산 세척제에 의한 중금속 오염 토양 세척효과 평가 (Evaluation on Soil Washing of Metal-contaminated Soil using Non-Inorganic Acids)

  • 이가빈;정원균;이수민;박진;조용환;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권5호
    • /
    • pp.10-17
    • /
    • 2022
  • Inorganic acids such as HCl, HNO3, and H2SO4 have been commonly applied to soil washing of heavy metals-contaminated soil due to their cost-effectiveness. However, implementing the 'Chemical Substance Control Act' requires off-site risk assessment of the chemicals used in the soil washing. Therefore, in this study, organic acids or Fe(III)-based washing agents were evaluated to replace commonly used inorganic acids. Ferric removed heavy metals via H+ generated by hydrolysis, which is similar to the HCl used in the control group. Oxalic acid and citric acid were effective to remove Cu, Zn, and Cd from soil. Organic acids could not remove Pb because they could form Pb-organic acid complexes with low solubility. Furthermore, Pb could be adsorbed onto the iron-organic acid complex on the soil surface. Ferric could remove exchangeable-carbonate, Fe-Mn hydroxide, and organic matter and sulfides bound heavy metals (F1, F2, and F3). Organic acids could remove the exchangeable-carbonate and Fe-Mn hydroxide bound metals (F1&F2). Therefore, this research shows that the fractionation of heavy metals in the soil and the properties of washing agents should be considered in the selection of agents in the process design.

폐탄광지역 퇴적물의 중금속 존재형태 및 안정화에 관한 연구

  • 이정란;이재영;김휘중
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.253-259
    • /
    • 2005
  • Mine is quickly decline, Nowadays, many of abandoned and closed mines. AMD is abandoned surface water by accumulated yellowboy and caused environmental pollution by amount of heavy metals. The aim of this study waste lime was mixed with the sediment to produce an aggregate far the purpose of neutralizing the acidity and stabilization the heavy metal in the aggregate structure .to pozzolan effect. The result of Waste lime and sediment mixed(5%, 10%, 20%)ration by curing days(3, 7, 38days), After 28 curing days as 5% mixed waste lime leaching solution concentration of all heavy metals is satisfied with regulation limit. Also, the result of fractionate heavy metals to stabilization as 28 curing days very decrease exchangeable and reducible type, and then increase carbonate type. With the above results, waste lime the most effective for the sediment treatment and useful for the recycling waste resource.

  • PDF