• 제목/요약/키워드: Exchangeable

검색결과 988건 처리시간 0.03초

소나무 수피를 포함한 원예작물 재배용 혼합상토의 개발 (Development of Root Media Containing Pine Bark for Cultivation of Horticultural Crops)

  • 박은영;최종명
    • 원예과학기술지
    • /
    • 제32권4호
    • /
    • pp.499-506
    • /
    • 2014
  • 국내에서 유통되고 있는 각종 분쇄부숙수피(GAPB)와 분쇄수피(GRPB)를 포함한 혼합상토를 개발하기 위해 본 연구를 수행하였다. 연구목적을 달성하기 위해 두 종류 수피의 물리 화학성을 분석한 후 피트모쓰(PM) 또는 코이어 더스트(CD)와 다양한 비율로 혼합하였다. 혼합물 중 물리성이 적합하다고 판단한 두 종류 상토의 pH 및 EC를 측정한 후 기비를 혼합하고 다시 화학성을 분석하였다. GAPB는 공극률 78.7%, 용기용수량 39.4%, 기상률 38.3%, 가비중 $0.15g{\cdot}cm^{-3}$, GRPB는 공극률 74.7%, 용기용수량 41.2%, 기상률 33.4%, 가비중 $0.19g{\cdot}cm^{-3}$로 측정되었다. 쉽게 이용할 수 있는 수분(EAW)과 완충수(BW)의 비율은 GAPB는 12.7% 및 8.5%, GRPB는 13.5% 및 8.8%로 각각 분석되었다. 화학적 특성에서 GAPB는 pH 5.26, EC $0.61dS{\cdot}m^{-1}$, 양이온교환용량(CEC) $0.32cmol{\cdot}kg^{-1}$, GRPB는 pH 5.19, EC $0.32dS{\cdot}m^{-1}$, CEC $9.32cmol{\cdot}kg^{-1}$로 분석되었다. 치환성양이온 함량을 분석한 결과 GAPB는 Ca 0.32, K 0.05, Mg 0.27 및 Na $0.12cmol{\cdot}kg^{-1}$, GRPB는 Ca 0.28, K 0.08, Mg 0.25 및 Na $0.09cmol{\cdot}kg^{-1}$로 분석되었다. 질소 및 인산함량은 GAPB는 $PO4$-P 485.8, $NO_3$-N 0.91, $NH_4$-N $0.62mg{\cdot}L^{-1}$, GRPB는 $PO_4$-P 578, $NO_3$-N 0.82, $NH_4$-N $1.00mg{\cdot}L^{-1}$로 분석되었다. PM + GAPB(8:2, v/v) 혼합상토의 공극률, 용기용수량, 기상률은 각각 89.3, 76.3 및 13.0%였지만 CD + GRPB(8:2)는 각각 88.2, 68.2 및 20.0%로 측정되었다. 혼합 후 측정한 pH와 EC는 PM + GAPB는 3.8 및 $0.24dS{\cdot}m^{-1}$로 CD + GRPB 혼합상토의 5.8 및 $0.65dS{\cdot}m^{-1}$보다 낮았다. 그러나 두 종류 상토에 기비를 혼합한 후 측정한 pH는 기비 혼합 전과 큰 차이를 보이지 않았는데, 이는 pH를 상승시키기 위해 혼합된 고토석회의 용해도가 낮은 것이 주요 원인이라고 판단하였다. 이상의 연구를 통해 도출된 결과는 추후 각종 수피를 이용한 혼합상토 개발에 유효하게 활용될 것이라고 생각한다.

통리(桶里) 해수욕장(海水浴場) 녹지대(綠地帶) 조성(造成)에 관(關)한 연구(硏究)(II) -곰솔 해안방재림(海岸防災林)의 수관량(樹冠量) 및 토양분석(土壤分析), 식재기반평가(植栽基盤評價) 및 녹지대계획(綠地帶計劃)- (Studies on a Plan for Afforestation at Tong-ri Beach Resort(II) -Analyses of Crown Amounts and Soil Properties in the Disaster-damage Prevention Forests of Pinus thunbergii PARL., the Valuation on Soil Properties for Planting and Planning for Afforestation-)

  • 조희두
    • 한국산림과학회지
    • /
    • 제77권3호
    • /
    • pp.303-314
    • /
    • 1988
  • 해안방재림(海岸防災林)으로 조성(造成)된 곰솔의 수관량(樹冠量)을 분석(分析)하여 방재기능(防災機能)을 평가(評價)하는 자료(資料)를 제공(提供)하고 방재림지(防災林地) 및 사구지(砂丘地) 녹지대(綠地帶) 조성지(造成地)에 대(對)한 토양성분비교(土壤成分比較) 및 분급평가(分級評價)의 결과(結果)와 제(第) I 보(報)(한림지(翰林地) 77(2))로 보고(報告)한 각종재해요인(各種災害要因)을 기반(基盤)으로 하여 해수욕장(海水浴場) 주변(周邊)에 녹지대(綠地帶)를 계획(計劃)하였는데 다음과 같이 요약(要約)할 수 있다. 1. 양수관량(陽樹冠量)은 재적생장(材積生長)의 기본(基本)이 되나 곰솔의 방재림(防災林)은 재적생장(材積生長)에 따라 음수관(陰樹冠)을 포함한 수관표면적(樹冠表面的)이나 체적(體積)이나 증가(增加)함을 알 수 있고 수관표면적(樹冠表面的)과 수관체적(樹冠體的)의 추정식(推定式)은 모두 회귀성(回歸性)을 인정(認定)할 수 있다. 따라서 방재림(防災林)은 1) 수고(樹高)가 큰 것일수록 수관표면적(樹冠表面的)이나 수관체적(樹冠體的)의 증가비율(增加比率)이 더 크고, 2) 흉고직경(胸高直徑)이 클수록 수관체적(樹冠體的)의 증가비율(增加比率)이 더 크나 수관표면적(樹冠表面的)의 증가(增加)는 비례(比例) 관계(關係)에 있다. 2. 곰솔의 방재림지(防材林地)는 사구지(砂丘地)보 OM, T-N, $SiO_2$량(量)이 더 많고 CEC도 더 큰 값이며 EC값이나 CI량(量)이 더 적은 것으로 보아 토양(土壤)이 개선(改善)되었고 방재림(防災林)의 염해방지기능(鹽害防止機能)을 인식(認識)할 수 있다. 3. pH도 곰솔의 방재림지(防材林地)는 개선(改善)되었다. 4. 치환성(置換性) 양(陽)이온은 곰솔의 방재림(防災林)보다 사구지(砂丘地)가 더 큰 값인데 패각(貝殼)이 계속 공급(供給)되므로 Ca량(量)이 특(特)히 많다. 그러나 $P_2O_5$는 사구지(砂丘地)와 방재림(防災林)은 거의 같은 값이다. 5. 곰솔의 방재림지(防材林地)는 전체적(全體的)으로 보아 토양(土壤)이 개선(改善)되고 있으나 양분(養分)이 매우 결핍(缺乏)되어 있다. 6. 곰솔 방재림(防災林)의 잔재본수(殘在本數)는 1970년(年) 식재(植栽)된 것은 34%, 1976년(年)의 것은 39%로서 자연적(自然的)으로 간인(間引)이 이루어져서 밀도조정(密度調整)이 되고 있으며, 지하고(地下高)도 각각(各各) 2.71m, 1.89m로서 지하율조정(地下率調整)으로 출입(出入)이 자유(自由)스러울 것으로 생각된다. 7. 사구지(砂丘地) 중심(中心)서 E방위(方位)에 있는 혼효림(混淆林)의 염풍해방지(鹽風害防止) 기능(機能)을 인정(認定)할 수 있다. 8. 녹지대(綠地帶)는 방재기능(防災機能)과 휴식기능(休息機能)에 만족(滿足)할 만한 적정립목도(適正立木度)가 요청(要請)된다. 9. 사구지(砂丘地) 주변(周邊)의 토양(土壤)을 분급평가(分級評價)한 결과(結果)와 입지조건(立地條件)과 휴식기능(休息機能) 및 방재기능(防災機能)을 고려(考慮)하여 통리인구(桶里人口)의 공한지(空閑地)와 1985년(年) 식재(植栽)된 해송(海松)이나 도로(道路)를 철거(撤去) 및 폐쇄(閉鎖)하여 녹지대(綠地帶) 조성지(造成地)로 하였다. 10. 녹지대(綠地帶)를 대상(帶狀)으로 장축(長軸)이 주풍방향(主風方向) SE에 대(對)하여 $14^{\circ}$동편(東偏)으로 계획(討劃)하였으며 부락진입도로(部落進入道路)는 해송(海松) 식재지(植栽地)와 논사이를 성토(盛土)하여 개설(開設)한다. 11. 녹지대(綠地帶) 조성(造成)함으로서 해수욕장(海水浴場)에게 휴식처(休息處)를 제공(提供)함은 물론(勿論) 풍하측(風下側)에 있는 경지(耕地)에 165m 지점(地默)까지의 방풍효과(防風效果)로 염해(鹽害) 시가(飛砂)의 피해(被害)를 방지(防止)하여 수도(水稻)의 증수효과(增收效果)가 있을 것으로 사료(思料)된다. 12. 녹지대(綠地帶) 조성면적(造成面積) $10,476m^2$에 2년생(年生) 곰솔묘(苗)를 $1m{\times}1m$ 간격(間隔)으로 10,476본(本)을 주풍방향(主風方向)에 대(對)하여 식재열(植栽列)이 직각(直角)이 되도록 식재(植栽)한다.

  • PDF

화학분석(化學分析)을 통(通)한 수도(水稻)의 가리적량(加里適量) 추정(推定)에 관한 연구(硏究) (Studies on the Estimation of K2O Requirement for rice through the Chemical Test Data of Paddy Top Soil)

  • 김문규
    • 농업과학연구
    • /
    • 제2권1호
    • /
    • pp.61-100
    • /
    • 1975
  • 수도재배(水稻栽培)에 있어 작중토(作中土)의 유효규산함량(有效珪酸含量), ppm과 유기물함량(有機物含量)% 비(比) $SiO_2$/O.M. 근거(根據)한 N 적량(適量) 추정식(推定式) $Nkg/10a=(4.2+0.096\;SiO_2/O.M.).F$에서 N시비량(施肥量)을 추정(推定) 시용(施用)할 때의 적정(滴定) 가리(加里) 시용량(施用量) 추정식(推定式) $K_2Okg/10a=(K_O/\sqrt{Ca+Mg}-Ks/\sqrt{Ca+Mg})\sqrt{Ca+Mg}{\cdot}47{\cdot}BD$ 단 (但) $K_O/\sqrt{Ca+Mg}=0.03158+0.0007658\;SiO_2/O.M.$ $K_S/\sqrt{Ca+Mg}=Kme/100g/\sqrt{(Ca+Mg)}me/100g$의 타당성(妥當性) 여부(如否)를 판단(判斷)하기 위하여 3수준(水準)의 규회석처리(珪灰石處理)를 주구(主區)로하여 작토중(作土中)의 $SiO_2$/O.M. 비(比)를 증대(增大) 시키고 각주구별(各主區別)로 적정가리시용량(適正加里施用量) 추정식(推定式)에서 추정(推定)한 $K_2O$ 시용량(施用量)과 이에30%를 증비(增肥)하는구(區) 및 적정가리시용추정치(適正加里施用推定値)와는 관계(關係)없이 $K_2O\;8kg/10a$를 시용(施用)하는 3개수준(個水準)의 $K_2O$ 처리구(處理區)를 설정(設定)하여 수도품종(水稻品種) Akibare를 재배(栽培)하는 포장시험(圃場試驗)을 수행(遂行)하고 토양(土壤), 식물체분석(植物體分析) 및 수도(水稻)의 생육(生育)과 수량(收量) 및 수량구성요소(收量構成要素)들을 조사(調査)한 성적(成績)들을 종합검토(綜合檢討)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 작토중(作土中) 유효규산함량(有效珪酸含量) ppm과 유기물함량(有機物含量)%비(比), $SiO_2$/O.M.에 근거(根據)한 수도(水稻)에 대(對)한 N적량추정식(適量推定式)에서 추정(推定)한 N시용량(施用量)은 수도품종(水稻品種) Akibare의 생육(生育) 및 수량면(收量面)에서 볼 때 과량(過量)이었으며 토양(土壤) 및 식물체(植物體) 분석치(分析値)들에서 검토(檢討)한 결과(結果) $SiO_2$/O.M. 비조절(比調節)의 기본원리(基本原理)는 합당(合當)하나 그 식(式)의 상수(常數) 또는 F값은 변동(變動)되여야 한다고 판단(判斷)되였다. 2. 작토중(作土中)의 K활성도(活性度) 치환성(置換性) 염기 me/100 g비(比) $K/\sqrt{Ca+Mg}$를 조절(調節)하기 위한 $K_2O$ 시비량(施肥量) 추정식(推定式)에서 추정(推定)한 $K_2O$ 시용량(施用量)은 수도품종(水稻品種) Akibare의 생육(生育) 및 수량면(收量面)에서 과량(過量)이였으며 토양(土壤) 및 식물체(植物體) 분석치(分析値)들에서 검토(檢討)한 결과(結果) 조절기준(調節基準)되는 $K_O/\sqrt{Ca+Mg}$의 설정식(設定式) 즉(卽) $K_O/\sqrt{Ca+Mg}=0.03158+0.0007658\;SiO_2/O.M.$의 원리(原理)는 합리적(合理的)이나 기상수(其常數)의 변동(變動)이 필요(必要)하며 $K_S/\sqrt{Ca+Mg}$에 있어서도 토양(土壤)의 K공급능(供給能)을 고려(考慮)할수 있는 새로운 조절기준(調節基準)이 설정(設定)되어야 한다고 판단(判斷)되였다. 3. 수도(水滔)에 대한 $K_2O$ 시용량(施用量) 추정식중(推定式中)의 $K_S/\sqrt{Ca+Mg}$ 조절(調節) 기준(基準)은 K 공급능(供給能)을 대표(代表)할수 있는 작토중(作土中)의 치환성(置換性) Kme/100g에 근거(根據)해서 마음과 같이 설정(設定)함이 보다 합리적(合理的)임을 수도품종(水稻品種) Akibare의 천상수량 $K_2O$ 흡수량면(吸收量面)에서 밝힐수 있었다. 즉 $K_S/\sqrt{Ca+Mg}=0.037+0.78Kme/100g$.

  • PDF

중북부지역(中北部地域) 시설원예지(施設園藝地) 토양(土壤)의 토성(土性), 염농도(鹽濃度) 및 화학성분(化學成分)의 조성(組成) (Soil Texture, Electrical Conductivity and Chemical Components of Soils under the Plastic Film House Cultivation in Northern Central Areas of Korea)

  • 정구복;류인수;김복영
    • 한국토양비료학회지
    • /
    • 제27권1호
    • /
    • pp.33-39
    • /
    • 1994
  • 시설원예지(施設園藝地) 토양(土壤)의 염농도(鹽濃度) 및 화학성분(化學成分)의 조성(組成)에 영향(影響)을 주는 요인(要因)을 밝히기 위하여 중북부지역(中北部地域)(양주, 고양, 화성, 평택, 수원)의 40개(個) 농가(農家)를 대상(對象)으로 하우스의 내부(內部)와 외부토양(外部土壤)을 표토(表土)(0~15cm)와 심토(深土)(15~30cm)별(別)로 채취(採取)하여 입경분석(粒徑分析) 및 화학분석(化學分析)을 실시하고 이 결과(結果)를 각(各) 요인별(要因別)로 검토(檢討)하여 얻어진 내용(內容)을 요약(要約)하면 다음과 같다. 1. 시설원예지(施設園藝地) 토양(土壤)의 화학적(化學的) 성질(性質)은 포토(表土)에서 평균치(平均値)로 pH 5.8, EC $3.59mScm^{-1}$, O.M 4.2%, 유효태 $P_2O_5$ 1,178 ppm, $NO_3-N$ 180 ppm, 유효태 $SO_4{^{2-}}$ 353 ppm, $Cl^-$ 240 ppm, 치환성 Na 0.40me/100g이었다. 2. 하우스 내부(內部) 토양(土壤)은 표토(表土)에 있어 하우스 외부토양(外部土壤)에 비(比)하여 질산태(窒酸態) 질소(窒素), 유효(有效) 황(黃), 염소(鹽素)의 함량(含量)은 2.5~3배, 치환성(置換性) 염기함량(鹽基含量)은 1.2~1.8배, EC는 2.8배 높았고 pH는 0.3 낮았다. 이 경향(傾向)은 심토(深土)에서도 같았다. 3. 토성(土性)의 분포비율(分布比率)은 사양토(砂壤土) 32.5%, 양토(壤土) 37.5%, 미사질양토(微砂質壤土) 30.0%이었고 염농도(鹽濃度), 질산태(窒酸態) 및 암모니아태(態) 질소(窒素)와 유효(有效) 황(黃)의 함량(含量)은 세입질(細粒質)인 미사질양토(微砂質壤土)에서 높았고, 유효인산(有效燐酸)의 함량(含量)과 pH값은 사양토(砂壤土) 쪽에서 높았다. 4. 유기물(有機物)과 유효인산(有效燐酸)의 함량(含量)은 경작년수(耕作年數)가 오래된 토양(土壤)일수록 높았으나 염농도(鹽濃度)를 비롯하여 질산태질소(窒酸態窒素), 유효(有效) 황(黃), 염소(鹽素) 및 치환성(置換性) Mg와 Na의 함량(含量)은 경작년수(耕作年數)가 2~4년(年) 토양(土壤)이 5년(年) 이상(以上)된 토양(土壤)보다 더 높았다. 5. 다중회귀(多衆回歸) 분석(分析) 결과(結果) 염농도(鹽濃度)에 미치는 기여도(寄與度)는 $NO_3-N$ > 유효태 $SO_4{^{2-}}$ > 치환성 Na > $Cl^-$ > 유효태 $P_2O_5$ > $NH_4-N$ > 치환성 Mg, 치환성 Ca의 순(順)으로 음(陰)이온이 우세(優勢)하게 작용(作用)하였다. 6. 염농도(鹽濃度) EC에 대한 총 음(陰)이온 함량(含量)(${\sum}A$)과 총 양(陽)이온 함량(含量)(${\sum}C$)과의 상관계수(相關係數)는 각각 $r=0.932^{**}$, $r=0.452^{**}$로 나타났다.

  • PDF

비모란 선인장(Gymnocalycium mihanovichii var. 'Ihong') 시설재배에서 지렁이분변토시용에 따른 생육특성 및 토양 화학성 변화 (Changed in Growth and Chemical Properties of Plastic Film House by Earthworm Cast on Gymnocalycium mihanovichii var. 'Ihong')

  • 최이진;조상태;김영문;김미선;이상권
    • 한국유기농업학회지
    • /
    • 제22권4호
    • /
    • pp.731-742
    • /
    • 2014
  • 본 연구는 다비 재배를 하고 있는 비모란선인장 재배토양에 친환경 부산물비료인 지렁이분변토를 혼합 재배할 때 구경, 구고, 자구수 및 토양 화학적 특성에 미치는 영향을 조사하여, 재배기간 동안 충분한 영양을 공급할 수 있고 생산량을 확보할 수 있는 적정 혼합비율을 규명하였다. 수출용 접목선인장인 비모란 선인장(대목: 9 cm 접수: $1.5{\times}1.3cm$ 접목묘) '이홍' 품종을 2013년 6월부터 12월까지 서울시 서초구 내곡동 서울특별시 농업기술센터 플라스틱하우스 내에서 수행하였다. 농가에서 재배하고 있는 모래와 비료를 50:50으로 혼합한 것을 대조구로 하고, 모래와 음식물쓰레기를 먹이로 하여 생산한 지렁이분변토의 혼합비율을 80:20, 60:40, 40:60, 20:80, 0:100으로 한 5조합의 pH는 7.1-7.4로 거의 비슷하게 조사되었는데 비모란선인장 재배의 적정 pH가 6.5-7.5로 적합한 범위였다. 유기물함량은 지렁이분변토 혼합비율이 높아짐에 따라 증가하였지만 관행처리구 55 mg/kg보다는 32-43 mg/kg으로 낮게 조사되었다. 치환성양이온함량은 혼합비율이 증가함에 따라 높아졌지만 관행처리구보다 $K^+$, $Na^+$, $Mg^{2+}$ 양이 적었으나 $Ca^{2+}$의 함량은 관행처리구는 $9.1cmol^+/kg$이나 지렁이분변토 혼합시 $11.5-33.7cmol^+/kg$으로 높게 조사되었다. 지렁이분변토 혼합비율에 따른 비모란선인장 이식 3개월 후 구경을 조사한 결과 대조구 31.39 mm 보다 지렁이분변토 혼합처리구가 32.46-37.59 mm로 유의성 있는 차이를 보였다. 이식 5개월 후 비모란선인장 생육특성을 조사한 결과 구경은 32.63 mm 보다 지렁이분변토처리구가 32.49-37.59 mm로 혼합비율이 증가함에 따라 유의성 있게 신장하였다. 구고는 대조구의 경우 2.63 mm이고 지렁이분변토 혼합비율에 따라 2.79-3.16 mm로 유의성 있게 조사되었다. 자구수가 많이 생기는 것은 농가에는 매우 유리한 상황인데 대조구는 2.7개이고 지렁이분변토 혼합비율이 높아짐에 따라 3.2-8.3개로 조사되어 고도로 유의하였다. 특히 지렁이분변토 80%와 100% 처리구에서 6.2개와 8.3개로 조사되어 대조구보다 2.5배 이상 증가하였는데 비모란선인장 재배농가에서 단기간 자구생산에 활용할 수 있을 것으로 사료되었다. 지렁이분변토 40%와 60% 혼합처리의 경우 자구수가 4.5와 4.8개로 대조구보다 많이 조사되었으며, 토양배수에도 문제가 없었고 이끼가 발생하는 현상도 없었다. 비모란선인장 생육특성을 조사해본 결과 지렁이분변토 40% 및 60% 혼합비율이 생육에 효율적이라고 판단되었다.

모암별 인삼묘포지의 토양특성에 관한 연구 (Soil properties in Panax ginseng nursury by parent rock)

  • 민일식;박관수;송석환;이삼웅
    • 농업과학연구
    • /
    • 제30권1호
    • /
    • pp.31-40
    • /
    • 2003
  • 충남 금산군에 위치하고 있는 고려인삼포장에 대하여 구성 모암별로 각각 흑운모화강암지역 및 천매암지역으로 분류하여 모암에 함유되어 있는 전이원소의 특성과 해당 모암별 풍화토양 및 인삼 묘포토양의 물리적 및 화학적 특성을 분석하였다. 본 고려인삼재배지에서 흑운모화강암지역의 토양은 풍화토양 및 묘포토양 공히 사질식토(Sandy clay)로 구성되어 있었으며, 천매암토양은 중식토(Heavy clay) 내지 미사질식토(Silty clay)로 구성되어 있었다. 흑운모화강암 풍화토양의 용적비중은 $1.21{\sim}1.32g/cm^3$이었고, 천매암 풍화토양은 $1.26{\sim}1.38g/cm^3$이었고, 인삼 묘포토양은 흑운모화강암토양은 $1.02{\sim}1.10g/cm^3$이었으며, 천매암 묘포토양은 $0.98{\sim}1.17g/cm^3$로 전체적으로 풍화토양보다 낮았는데, 이는 경작을 위한 토층의 경운 때문으로 사료된다. 흑운모화강암 풍화토양의 pH는 4.80이었고, 천매암 풍화토양은 5.34로 산성암인 화강암에서 더 낮게 나타났다. 흑운모화강암 묘포토양 pH는 2년 생지역이 4.39, 4년생지역이 4.40이었고, 천매암묘 포토양은 2년생지역이 5.24, 4년생지역이 5.34로 나타났으며, 이는 풍화토양의 pH 변화가 묘포토양의 pH 변화와 일치하였다. 유기물함량은 흑운모화강암 풍화토양(0.24%)보다 천매암 풍화토양(1.02%)이 높았으며, 흑운모화강암 묘포토양은 2년생지역이 0.87%, 4년생지역이 1.52%이었고, 천매암토양은 2년생지역이 2.06%, 4년생지역이 2.96%으로 천매암토양의 유기물함량이 더 높게 나타났다. 전질소 함량은 흑운모화강암 풍화토양은 259.43ppm이었고, 천매암 풍화토양은 657.22ppm이었으며, 묘포 토양은 흑운모화강암지역은 2년생지역이 588.04ppm, 4년생지역이 657.22ppm이었고, 천매암 지역은 2년생지역이 1037.72ppm, 4년생지역이 1227.96ppm이었다. 또한 질산태질소 및 암모니아 태질소의 함량은 흑운모화강암 풍화토양에서 미량 및 5.98ppm이었고, 천매암 풍화토양은 6.73ppm 및 9.94ppm이었다. 묘포토양의 경우 흑운모화강암토양은 각각 2년생지역이 223.09ppm, 26.96ppm이었고, 4년생지역이 19.46ppm, 8.23ppm이었으며, 천매암토양의 2년생지역이 각각 14.22ppm, 16.84ppm이었고, 4년생지역이 306.93ppm, 34.21ppm이었다. 이는 비료의 종류에 따라 차이가 생기지만 암모니아 태질소의 산화로 인한 질산태 질소 성분이 더 많이 축적된 것으로 나타났다. 인산함량은 흑운모화강암 및 천매암 풍화토양에서 14.41ppm 및 38.60ppm이었으며, 묘포토양은 흑운모화강암지역은 2년생지역이 46.89ppm, 4년생지역이 102.44ppm이었고, 천매암지역은 2년생지역이 147.04ppm, 4년생지역이 342.97ppm이었다. 토양 중 양이온치환용량은 흑운모화강암 풍화토양이 12.34me/100g이었고, 천매암 풍화토양이 15.40me/100g이었다. 흑운모화강암 묘포토양은 2년생지역이 15.80me/100g, 4년생지역이 7.70me/100g이었고, 천매암지역은 2년생지역이 12.14me/100g, 4년생지역이 12.83me/100g이었다. 치환성양이온($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$)은 모두 풍화토양내 함량보다 묘포토양의 함량이 더 높았다. $SO_4{^2-}$ 함량은 모암별 풍화토양의 함량(화강암: 5.98ppm, 천매암: 9.94ppm)이 묘포토양(흑운모화강암 2년: 26.96ppm, 4년: 8.23ppm, 천매암 2년: 16.84ppm, 4년: 64.21ppm)에 비해 모두 낮았다.$Cl^-$ 은 풍화토양내에는 두 모암지역 모두 미량으로 존재하였으며, 묘포토양(흑운모화강암 2년: 39.06ppm, 4년: 273.43ppm, 천매암 2년: 66.41ppm, 4년: 406.24ppm)은 비료성분의 투입으로 풍화토양보다 함량이 높아진 것으로 사료된다.

  • PDF

한국토양(韓國土壤)의 유효인산량(有效燐酸量) 검정(檢定)을 위한 화학적(化學的) 방법(方法)에 대한 연구(硏究) (A Comparative Study on the Chemical Methods for the Determination of Available Phosphorus in Korean Soils)

  • 임선욱;정종배;사동민
    • Applied Biological Chemistry
    • /
    • 제29권1호
    • /
    • pp.62-72
    • /
    • 1986
  • 작물(作物)에 대한 토양(土壞)의 유효인산량(有效燐酸量)을 화학적(化學的)인 방법(方法)으로 빠르고 정확(正確)하게 검정(檢定)하는 것은 농경지(農耕地) 토양(土壤)의 화학적(化學的) 특성(特性)과 비옥도(肥沃度)를 위하여, 또는 인산시비량(燐酸施肥量)의 결정(決定)을 위하여, 또는 한편으로는 환경(環境)의 화학적(化學的) 평가(評價)와 토양성분(土壤成分)에 대한 화학적(化學的) 연구(硏究)를 위하여 요구(要求)되는 과제(課題)이다. 현재(現在) 토양(土壤)의 유효인산(有效燐酸)에 대한 화학적(化學的) 규정(規定)과 그의 측정방법(測定方法)은 여러 가지 사정(事情)에 의하여 변동(變動)되거나 다수(多數)의 상이(相異)한 방법(方法)이 제안(提案)되어 있으므로 최적(最適)의 측정방법(測定方法)을 확립(確立)하기 위하여는 토양(土壤)과 작물(作物)의 영양적(營養的) 특성(特性)을 기초(基礎)로 하여 광범위(廣範圍)의 실험적(實驗的)인 결과(結果)에서 도출(導出)되어야 할 것이다. 한국(韓國)에서의 토양유효인산(土壤有效燐酸)의 화학적(化學的) 측정방법(測定方法)은 현재(現在) 통일(統一)되어 있지 못하고 제안(提案)된 다수(多數)의 측정방법(測定方法)에 대하여 실험적(實驗的)으로 광범위(廣範圍)하게 검토(檢討)되지 못하였으므로 본(本) 연구(硏究)는 이러한 목적(目的)을 위하여 전국(全國) 다수지역(多數地域)(44점(點))의 전토양(田土壤)을 공시(供試)하여 작물재배(作物栽培)(옥수수)를 통한 인산흡수량(燐酸吸收量)을 측정(測定)하고 한편 상이(相異)한 10가지 화학적(化學的) 방법(方法)으로 분석(分析)한 결과(結果)로써 적합(適合)한 방법(方法)을 확립(確立)하고저 하였으며 현재(現在)까지의 시험결과(試驗結果)를 다음과 같이 종합(綜合)한다. 공시토양(供試土壤)의 전인산량(全燐酸量)은 533ppm으로부터 4,917ppm까지의 넓은 범위에 있었으며 유기물(有機物) 함량(含量)과 유의성(有意性)있는 정(正)의 상관(相關)을 보였다. 특이산성토(特異酸性土)와 화산회토(火山灰土)는 공(共)히 유기물함량(有機物含量)은 높았으나 전인산량(全燐酸量)은 전자(前者)는 비교적(比較的) 낮았고 후자(候者)는 매우 높았다. 추출조건(抽出條件)이 상이(相異)한 10가지 화학적(化學的) 방법(方法)으로 측정(測定)한 유효인산(有效燐酸)으로 규정(規定)되는 양(量)은 방법간(方法間)에 다소(多少)의 차이(差異)가 있었으며 1%로부터 48%의 범위(範圍)에 있었다. 각(各) 방법(方法)으로 측정(測定)한 인산량(燐酸量)을 상호비교(相互比較)한 상대치(相對値)는 다음과 같은 순위(順位)로 배열(配列)된다. $H_2O(5\;min.)\;1.0\;<\;H_2O(60min.)\;2.27\;<\;NH_4HCO_3\;5.57\;<\;NaHCO_3\;7.42\;<\;Double\;lactate\;9.71\;<\;Bray\;No.1\;12.53\;<\;Lancaster\;17.63\;<\;Nelson\;25.96\;<\;AcOH\;27.6\;<\;CAL-method\;50.27$ 토양적(土壤的) 특성(特性)의 차이(差異)로는 특이산성토(特異酸性土) 화산회토(火山灰土) 그리고 토성(土性)이 거친 토양(土壤)에서는 어느 방법(方法)으로도 측정(測定)된 인산량(燐酸量)은 매우 낮았다. 전반적(全般的)으로 토양(土壤)의 pH와 전인산(全燐酸)은 추출(抽出)되는 인산(燐酸)과 유의성(有意性)있는 정(正)의 상관(相關)을 보였으며 유기물량(有機物量)과는 Nelson법(法)$(HCl-H_2SO_4)$과 CAL법(法)에서 부(負)의 상관(相關)을 보였다. 교환성(交換性) Ca과는 특(特)히 Olsen법(法)$(NaHCO_3$추출(抽出))이 유의성(有意性)있는 상관(相關)을 보였으므로 석회질토양(石灰質土壤)에는 이 방법(方法)을 적용(適用)하는 것이 유용(有用)할듯하다. 2회(回) 연속재배(連續栽培)에 의하여 식물(植物)(옥수수)이 흡수(吸收)한 인산량(燐酸量)은 토양(土壤) 전인산량(全燐酸量)에 대비(對比)하면 매우 낮아 평균(平均) 4.05%에 불과(不過)하였으며 2차재배(次栽培)가 1차재배(次栽培)보다 평균(平均) 2배(倍) 이상의 높은 흡수(吸收)를 보였다. 각(各) 토양유효인산(土壤有效燐酸)의 측정방법(測定方法)에 의한 결과(結果)와 식물체(植物體)가 흡수(吸收)한 인산량(燐酸量)을 대조(對照)하여 한국전토양(韓國田土壤)의 유효인산량(有效燐酸量)을 화학적(化學的)으로 검토(檢討)하기 위하여 현재(現在) 널리 사용(使用)되고 있는 Lancaster법(法)보다는 Soltanpour$(NH_4HCO_3$추출(抽出))법(法), Double lactate법(法) 그리고 Bray No.1법(法)이 보다 적합(適合)할듯하나 이는 토양(土壤)의 성질(性質)과 작물(作物)의 종류(種類)를 달리한 조건(條件)에서 재검토(再檢討)하여 확정(確定)할수 있을듯하다.

  • PDF

골재 부산물의 용토재 활용을 위한 특성 분석 (Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials)

  • 양수찬;정영상;김동욱;심규섭
    • 한국토양비료학회지
    • /
    • 제40권5호
    • /
    • pp.418-428
    • /
    • 2007
  • 본 연구는 골재 부산물의 용토재로서 활용을 위한 기초 특성 분석으로서 전국 21개소의 골재 업체를 대상으로 골재 생산시 생하는 슬러지나 석분 등 골재 부산물의 화학성과 물리성 및 광물 조성을 알아 보는데 있다. 그 결과를 요약하면 다음과 같다. 1. 골재 부산물의 pH는 전라도 지역의 JH, DA 업체를 제외하고 모두 8.41~10.97 정도로 높았으며, EC는 평균 $167.9{\mu}S\;cm^{-1}$ 이고 전라도 지역은 대부분 $33.0{\sim}122.4{\mu}S\;cm^{-1}$ 정도로 상대적으로 낮은 수치를 보였으나, 경상도 지역은 $169.5{\sim}639.0{\mu}S\;cm^{-1}$ 정도로 상대적으로 높은 수치를 나타냈다. 2. 유기물 함량은 대부분 $2.9{\sim}5.0g\;kg^{-1}$ 이며, 강원도 지역의 GG 업체의 경우 $11.27g\;kg^{-1}$ 로 상대적으로 높았다. T-N의 경우, 0.01~0.11 % 정도이고 $NH_4{^+}-N$의 경우, 대부분 지역은 $14.0{\sim}67.2mg\;kg^{-1}$ 수준이었으나 전라도 지역은 $1.03{\sim}3.00mg\;kg^{-1}$ 수준을 보였다. $NO_3{^-}-N$의 경우, 대부분 지역은 $14.0{\sim}67.2mg\;kg^{-1}$ 수준이었으나 전라도 지역은 $1.0{\sim}3.2mg\;kg^{-1}$ 수준을 보였다. $P_2O_5$ 의 경우, 강원도의 $10.2mg\;kg^{-1}$ 에서 전라도 $24.8mg\;kg^{-1}$ 까지 비슷한 수준을 나타냈다. $Ca^{2+}$, $Mg^{2+}$, $K^+$$Na^+$ 의 각 평균은 $2.299cmol_c\;kg^{-1}$, $0.472cmol_c\;kg^{-1}$, $0.021cmol_c\;kg^{-1}$, $0.055cmol_c\;kg^{-1}$ 이며 $Ca^{2+}$의 경우, 최고값인 경상도 DE 업체의 $6.385cmol_c\;kg^{-1}$ 부터 최저값인 전라도 JH 업체의 $0.742cmol_c\;kg^{-1}$ 사이의 범위를 보였다. $Mg^{2+}$의 경우 최고값인 전라도 YS 업체의 $1.850cmol_c\;kg^{-1}$ 부터 최저값인 충청도 JK 업체의 $0.006cmol_c\;kg^{-1}$ 사이의 범위를 보였다. 양이온교환용량은 평균 $7.6cmol_c\;kg^{-1}$으로 경상도에서 $17.3cmol_c\;kg^{-1}$으로 가장 높았으며, 전라도에서 $2.2cmol_c\;kg^{-1}$ 으로 가장 낮았다. 3. 중금속 함량은 모든 항목에서 환경부에서 고시한 농경지 오염 우려 기준을 초과하지 않았다. Cd의 경우, 평균 $0.011mg\;kg^{-1}$ 이며 최저 값인 강원도 DM 업체의 $0.003mg\;kg^{-1}$ 에서부터 최고 값인 경상도 DH 업체의 $0.062mg\;kg^{-1}$ 사이의 값을 보였다. $Cr^{6+}$의 경우, 평균 $0.068mg\;kg^{-1}$ 이며 최저 값인 강원도 DM 업체와 SS 업체의 $0.037mg\;kg^{-1}$ 에서부터 최고 값인 경기도 KG 업체의 $0.169mg\;kg^{-1}$ 사이의 값을 보였다. Cu의 경우, 평균 $0.419mg\;kg^{-1}$ 이며 최저 값인 강원도 DM 업체와 SS 업체의 $0.000mg\;kg^{-1}$ 에서부터 최고 값인 충청도 SB 업체의 $1.072mg\;kg^{-1}$ 사이의 값을 보였다. Ni의 경우, 평균 $3.513mg\;kg^{-1}$ 이며 최저 값인 전라도 DA 업체의 $0.045mg\;kg^{-1}$ 에서부터 최고 값인 강원도 GG 업체의 $11.980mg\;kg^{-1}$ 사이의 값을 보였다. Zn의 경우, 평균 $0.588mg\;kg^{-1}$이며 최저 값인 경상도 SU 업체의 $0.014mg\;kg^{-1}$ 에서부터 최고 값인 충청도 SB 업체의 $1.086mg\;kg^{-1}$ 사이의 값을 보였다. Pb의 경우, 평균 $0.467mg\;kg^{-1}$이며 최저 값인 강원도 DM 업체의 $0.008mg\;kg^{-1}$ 에서부터 최고 값인 충청도 SB 업체의 $1.261mg\;kg^{-1}$ 사이의 값을 보였다. Fe의 경우, 평균 $33.815mg\;kg^{-1}$이며 최저 값인 경상도 SU 업체의 $0.805mg\;kg^{-1}$ 에서부터 최고 값인 경기도 KG 업체의 $106.400mg\;kg^{-1}$ 사이의 값을 보였다. Mn의 경우, 평균 $18.427mg\;kg^{-1}$이며 최저 값인 강원도 SS 업체의 $0.703mg\;kg^{-1}$ 에서부터 최고 값인 충청도 SB 업체의 $49.140mg\;kg^{-1}$ 사이의 값을 보였다. 4. 골재 부산물의 토성은 평균적으로 대부분 모래가 50 % 이하이며 미사가 50 % 이상인 미사질양토(SiL)인데 비해 전라도의 경우, 양토(L)였다. 유효수분은 평균 2.58 % 로 매우 낮은 수준이며, 액성한계의 경우, 최저 값인 전라도 JS 업체의 5.9 % 에서 최고 값인 경상도의 DH 업체의 39.1 % 사이의 값을 보이며 평균 24.4 %로 일반 밭 토양의 액성한계와 유사한 수치를 보였다. 대부분 시료에서 점착성 및 가소성 모두 그 성질이 약하거나 없는 C나 D 등급이었다. 5. 골재 부산물의 투수성은 경기도 KG 업체의 경우, $2.8{\times}10^{-6}m\;sec^{-1}$, 강원도 CC 업체의 경우, $0.4{\times}10^{-6}m\;sec^{-1}$, 그리고 전라도 KS 업체의 경우, $1.4{\times}10^{-6}m\;sec^{-1}$ 로 상당히 느린 투수성을 보여준다. 6. 골재 부산물의 X선 회절분석 결과, 석영(Quartz)과 단사녹니석(Clinochlore)이나 금운모(Phlogopite)가 주요 피크로 대부분 시료에서 화강암 또는 화강 편마암 지역의 광물 조성을 보였으며, 강원도 지역의 DM 업체에서 석회암을 모암으로 하는 방해석(Calcite)과 백운석(Dolomite)이 주요 피크였다. 7. 골재 부산물의 화학 조성 분석 결과(X선 형광분석), 대부분 시료는 원암을 화강암이나 화강편마암으로 하고 있기에 대표적인 원소는 $SiO_2$이며 그 다음으로 $Al_2O_3$가 대부분을 차지한다. 강원도의 SS, DM 업체의 $SiO_2$의 함량은 30 %이하로 낮은 반면에 CaO의 함량은 45 % 이상으로 높은 수치를 보여준다. 골재 부산물의 규반비는 1.70~3.42 이며, 이는 골재 부산물이 화학적 풍화 보다는 원암에서 기계적인 파쇄에 의한 단순 입자 크기의 축소로 보이며, 원암 가루, 즉 1차 광물로서 2차 광물이 거의 없기 때문이라 판단된다. 8. 골재 부산물의 시차 열분석 결과, 열변화 곡선이 안정적이며 주요 천이점이 $550^{\circ}C$에서 $610^{\circ}C$ 부근에 석영의 천이를 보이는 것과 열변화 곡선이 불안정적이며 여러 천이를 보이는 것으로 나뉘며, 골재 부산물의 경우는 흡 발열피크를 검토할 때 점토광물이 거의 없는 것으로 보인다.