• Title/Summary/Keyword: Excess settlement

Search Result 101, Processing Time 0.021 seconds

Estimation of the Degree of Consolidation using Settlement and Excess Pore Water Pressure (침하량과 과잉간극수압을 이용한 압밀도의 추정)

  • 이달원;임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.111-121
    • /
    • 2002
  • This study was performed to estimate the degree of consolidation using excess pore water pressure in the very soft ground. The final settlement prediction methods by Hyperbolic, Asaoka and Curve fitting methods from the measured settlement data were used to compare with the degree of consolidation estimated by excess pore water pressure. The dissipated excess pore water pressure during embankment construction and the peak excess pore water pressure on the completed embankment were used for the estimation of the degree of consolidation. After completion of embankment, it was concluded that the degree of consolidation estimated from dissipated excess pore water pressure was more reliable than that from the peak excess pore water pressure. And, the degree of consolidation estimated from the surface settlement was nearly the same as settlement of each layer. The degree of consolidation estimated from dissipated excess pore water pressure was a little larger than that from settlement.

Excessive Settlement Back-Analysis of Railway Embankment on Soft Soils during Service

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • This paper presents case history of railway embankment excess settlement on soft clay during service in southern region of Korea. A lot of field observations show that the measured settlements are a lot larger than settlements actually calculated in this area. Back analysis is carried out to verify the soil parameters which are intended to investigate in the subsurface exploration phase and later in a laboratory test program. Recommendations and causes for the engineering practice are suggested to review the determination of excess settlements and, consequently, to improve the settlement prediction. This enormous discrepancy is due to the passing over secondary consolidation, and the design filling did not meet to real construction filling. Immediate settlement could be subsidiary factor of excess settlement.

Simplified Estimation of Settlement in Silty Sand Grounds Induced Liquefaction (액상화에 의한 실트질 모레지반의 침하 산정)

  • Rhee, Min-Ho;Kim, Tae-Hoon;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.209-216
    • /
    • 2000
  • When subjected to earthquake shaking, saturated sandy soil may generate excess pore pressure. And a time may come when initial confining pressure will equal to excess pore pressure. Depending on the characteristics of the soil and the length of the drainage path, excess pore pressure was dissipated after earthquake. For this reason, it was induced settlement in grounds and fatal damage of various structures. In this study, settlement in silty sand grounds induced earthquake was evaluated using post-liquefaction constitutive equation between volumetric strain and shear strain from previous study. Using that, it was proposed that simplified estimation of settlement in silty sand grounds induced liquefaction.

  • PDF

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.

A Study on Determination of the Degree of Consolidation and Time Factor Considering Site Ground Characteristics (현장 지반특성을 고려한 압밀도 및 시간계수 결정에 관한 연구)

  • Choi, Min-Ju;Kim, Hung-Nam;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This study is conducted to minimize the problems caused by the difference between the settlement and settlement time of the one-dimensional consolidation analysis by the Terzaghi's consolidation theory, which is generally used in domestic soft soil design, from the settlement and settlement time measured at the field site. Consolidation-time factor considering the field site characteristics can be determined using the relationship among the degree of consolidation, settlement time, and time factor, the time-settlement curve measured at the field is reverse- analysis using a numerical-analysis technique to reproduce the same consolidation behavior as in the field. Time-settlement and time-excessive pore water pressure data when the same consolidation behavior as the site is reproduced Consolidation-time factor of the soil of Songsan Green City by settlement and excess pore water pressure was calculated using the settlement and excess pore water pressure for each settlement time. If the results of this study use the Terzaghi consolidation-time factor, which does not consider the consolidation characteristics of the soft ground target area, it is difficult to determine the end time of the soft ground during construction. It is necessary to use the established settlement-time factor.

Field Test of Recycled Aggregates and Crushed Stone as Horizontal Drains (수평배수재용 순환골재와 쇄석의 현장시험)

  • Kim, Si-Jung;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, field test on utilization of recycled aggregates and crushed stone as horizontal drains to use an alternative material of sand in soft ground is practiced. The settlement with time showed similarly ranged from 28.4-30.3 cm in the all horizontal materials. The excess pore water pressure of the recycled aggregates and crushed stone showed smaller than sand. The small the excess pore water pressure becomes faster the consolidation period and it can reduces the amount of residual settlement. Therefore, it was verified as having enough to an alternative materials that the field applicability is excellent. The distribution of earth pressure with time showed similarly in the all horizontal materials. The recycled aggregates and crushed stone was very applicable to practice because there is no mat resistance in the horizontal drains layer. The penetration rate in the SCP and PVD improvement sections did not show large differences as the grain size and the horizontal drainage height increases.

Time dependent behavior of piled raft foundation in clayey soil

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Zayadi, Abbas A.O.
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.17-36
    • /
    • 2013
  • Settlement of the piled raft can be estimated even after years of completing the construction of any structure over the foundation. This study is devoted to carry out numerical analysis by the finite element method of the consolidation settlement of piled rafts over clayey soils and detecting the dissipation of excess pore water pressure and its effect on bearing capacity of piled raft foundations. The ABAQUS computer program is used as a finite element tool and the soil is represented by the modified Drucker-Prager/cap model. Five different configurations of pile groups are simulated in the finite element analysis. It was found that the settlement beneath the piled raft foundation resulted from the dissipation of excess pore water pressure considerably affects the final settlement of the foundation, and enough attention should be paid to settlement variation with time. The settlement behavior of unpiled raft shows bowl shaped settlement profile with maximum at the center. The degree of curvature of the raft under vertical load increases with the decrease of the raft thickness. For the same vertical load, the differential settlement of raft of ($10{\times}10m$) size decreases by more than 90% when the raft thickness increased from 0.75 m to 1.5 m. The average load carried by piles depends on the number of piles in the group. The groups of ($2{\times}1$, $3{\times}1$, $2{\times}2$, $3{\times}2$, and $3{\times}3$) piles were found to carry about 24%, 32%, 42%, 58%, and 79% of the total vertical load. The distribution of load between piles becomes more uniform with the increase of raft thickness.

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

A Study on the Relaxion of Secondary Compression Settlement using Preloading Method (프리로딩에 의한 2차 압밀침하량 감소에 관한 연구)

  • Huh, Ik-Chang;Im, Jong-Chul;Chang, Ji-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1086-1093
    • /
    • 2005
  • In soft ground, consolidation settlement is mainly consider. The primary consolidation settlement which is the time when the excess pore water pressure is completely dispersed and the secondary consolidation settlement which follows. Recently as the depth of consolidation layer increases the consideration of not only the primary consolidation settlement but also of the secondary consolidation settlement becomes a very important element. But up to the present there were only a few in-depth study of the secondary consolidation settlement performed. At present there are a lot of methods available when it comes to the improvement of soft soil. In this study, Preloading Method which is the most commonly used soft soil improvement method locally was used in order to investigate the method for the reduction of secondary consolidation settlement. The objective of this study is to determine the amount of preloading required to reduce secondary consolidation settlement and to determine whether secondary consolidation settlement using standard consolidation test.

  • PDF