• Title/Summary/Keyword: Excess pore pressure

Search Result 249, Processing Time 0.037 seconds

Estimation of the Degree of Consolidation using Settlement and Excess Pore Water Pressure (침하량과 과잉간극수압을 이용한 압밀도의 추정)

  • 이달원;임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.111-121
    • /
    • 2002
  • This study was performed to estimate the degree of consolidation using excess pore water pressure in the very soft ground. The final settlement prediction methods by Hyperbolic, Asaoka and Curve fitting methods from the measured settlement data were used to compare with the degree of consolidation estimated by excess pore water pressure. The dissipated excess pore water pressure during embankment construction and the peak excess pore water pressure on the completed embankment were used for the estimation of the degree of consolidation. After completion of embankment, it was concluded that the degree of consolidation estimated from dissipated excess pore water pressure was more reliable than that from the peak excess pore water pressure. And, the degree of consolidation estimated from the surface settlement was nearly the same as settlement of each layer. The degree of consolidation estimated from dissipated excess pore water pressure was a little larger than that from settlement.

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Dissipation Pattern of Excess Pore Pressure after Liquefaction in Saturated Sand Deposits (포화된 모래지반의 액상화후 과잉간극수압 소산양상)

  • 하익수;박영호;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.90-97
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction which governs the post-liquefaction behavior of liquefied sand deposits. 1-g shaking table tests were carried out on 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured curve of the excess pore pressure dissipation was simulated using the solidification theory, and from the analysis of the velocity of dissipation, the dissipation pattern of excess pore pressure after liquefaction was examined. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size ( $D_{10}$) divided by the coefficient of uniformity ( $C_{u}$), and the increase in the initial relative density of the ground played a role in shifting this correlation curve toward an increased dissipation velocity. From the correlation, an approximate method was recommended for prediction of the dissipation curve of excess pore pressure after liquefaction in saturated sand deposits.s.s.

  • PDF

Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil (과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석)

  • Ryu, Moo-Sung;Hwang, Jai-Ik;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests (충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구)

  • Kim, Dong-Hwi;Ha, Ik-Soo;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Prediction of Excess Pore Water Pressure of Reservoir Embankment Considering Fill and Ponding (성토하중과 수위변화를 고려한 저수지의 과잉공극수압 예측)

  • Lee, Dal-Won;Min, Hag-Gyou
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1212-1221
    • /
    • 2010
  • A theoretical equation was proposed to consider the effect of fill and ponding for the excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The degree of consolidation according to ponding predicted by applying the proposed equation was close to the observed degree of consolidation on the double drainage condition(at DP-3) but it was less than the observed degree of consolidation on the single drainage condition(at DP-5). The predicted excess pore water pressure according to fill and ponding was very applicable to practice because it was close to the observed data.

  • PDF

A Study on Consolidation Characteristics at Sand Pile Adjacent Ground by Cavity Expansion Theory (공동확장이론에 의한 Sand Pile 주변지반에서의 압밀특성에 관한 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.231-238
    • /
    • 2000
  • Sand piling method is one of the most widely used methods to improve soft soils. There are several methods to install sand piles, but driven pile method is considered as one of the easiest method. This method simply pushes down the sand piles into soft soils, so that the excess pore pressure would be generated if the soil is saturated. This pore pressure acts as consolidation load. If the amount of sand pile induced pore pressure can be predicted in reasonable ways, the effects of sand piling to improve soft soils would be predicted, and the height of preload can be reduced. In this article, sand pile induced excess pressure was predicted by cavity expansion theory, and the predicted values were compared with the field measured values. The results showed fair agreements between the measured and the predicted excess pore pressure.

  • PDF

A Preliminary Study on Submarine Slope Failure of Gas Hydrate-bering Sediments (가스 하이드레이트가 매장된 해저사면의 붕괴에 관한 기초적 연구)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.399-404
    • /
    • 2008
  • The influence of gas hydrate dissociation on submarine slope stability was studied in this paper. Gas hydrates are stable under high pressure and low temperature conditions. Once gas hydrate dissociates due to natural or human activities, it generates large amount of gas and water. During gas hydrate dissociation, a pore pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness. A pore pressures model was proposed to calculated excess pore pressures generated by gas hydrate dissociation at the Storegga Slide. A slope stability analysis for the Storegga Slide using a two dimensional finite difference method was carried out by considering excess pore pressures due to gas hydrate dissociation. Since the excess pore pressure calculated by the proposed method resulted in the considerable loss of stiffness and strength in slope, a submarine slope failure occurred at the Storegga slide was well simulated.

  • PDF

Consolidation Behavior of Agricultural Reservoir under Embankment on Soft Clay (연약지반상에 축조된 농업용 저수지의 압밀거동)

  • Oh, Bum-Hwan;Lee, Dal-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.313-316
    • /
    • 2002
  • This study was performed to evaluation the consolidation behavior of agricultural reservoir in the very soft ground. The final settlement prediction methods by Hyperbolic and Asaoka methods were used to compare with the degree of consolidation estimated by exess pore water pressure. The dissipated excess pore water pressure during embankment construction and peak excess pore water pressure on the completed embankment were suggested for the estimation of the degree of consolidation. It was concluded that the degree of consolidation estimated from dissipated excess pore water pressure was more reliable than that from the peak excess pore water pressure.

  • PDF