• Title/Summary/Keyword: Excess air flow

Search Result 64, Processing Time 0.039 seconds

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

Estimation of THI Index to Evaluate Thermal Stress of Animal-occupied Zone in a Broiler House Using BES Method (BES 기법을 이용한 육계사 내부 고온 스트레스 평가를 위한 THI 지수 모의)

  • Ha, Taehwan;Kwon, Kyeong-seok;Hong, Se-Woon;Choi, Hee-chul;Lee, Jun-yeob;Lee, Dong-hyun;Woo, Saemee;Yang, Ka-young;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sangyeon;Lee, In-bok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Thermal stress of livestock has been issued due to recent climate change trends and this causes reproductive disorders, decreased feed consumption, immunosuppression, and increased mortality of animals. Concept of THI has been widely used to quantitatively evaluate the degree of thermal stress for animals, however use of this concept is restricted for animals living in the enclosed facilities such as mechanically ventilated broiler houses. In this study, time-based internal energy flow and variation trends of temperature and humidity were analyzed based on BES technique. Local weather data, insulation characteristics of building materials, heat and moisture generation rate from broilers according to age, algorithm of ventilation operation were adopted for boundary condition of the model to accurately compute THI values inside the mechanically ventilated broiler house. From the BES computation, excess frequency of THI threshold in Jeju city was highest on the assumption that air conditioning equipments were not installed. When general raising density ($39kg\;m^{-2}$) was adopted, total 2,191 hours were exceeded. Excess hours of THI threshold were strongly related to the cumulative air temperature ($R^2=0.87$).

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

A Study on the Treatment of Swine Wastewater Using Titanium Dioxide Prepared by Hydrothermal Method (수열합성법으로 제조된 이산화티탄에 의한 축산폐수 처리에 관한 연구)

  • Yang, Jin-Seop;jung, Won Young;Baek, Seung Hee;Lee, Gun Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.148-154
    • /
    • 2007
  • This study was performed to evaluate the application of $TiO_2$ on the photocatalytic treatment of swine wastewater. $TiO_2$ sol was prepared by hydrothermal method with the agent ratio($(C_2H_5)_2NH_2\;mol/Ti(OC_3H_7)_4\;mol)=1$ and R ratio ($H_2O\;mol/Ti(OC_3H_7)_4\;mol)=42$. The effect of parameter on the removal efficiency of swine wastewater in a batch type immobilized photocatalyst system such as initial pH, intensity of UV, dosage of $TiO_2$, air flow rate, and concentration of $H_2O_2$ was examined. Wastewater was effectively eliminated in the presence of both UV light illumination and $TiO_2$. Photocatalytic activity was higher in acidic condition compared to neutral and alkaline conditions. In addition, photocatalytic activity increased with increasing UV light intensity, dosage of $TiO_2$, the flow rate of air and the amount of $H_2O_2$ added as an oxidant, but the excess amount of $H_2O_2$ dosage decreased the removal efficiency.

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction (석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Geun-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1065-1073
    • /
    • 2006
  • The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.