• Title/Summary/Keyword: Excess air

Search Result 357, Processing Time 0.03 seconds

Optimization of PEM Fuel Cell System Using a RSM (반응표면기법에 의한 고분자전해질형 연료전지 시스템의 최적화)

  • Xuan, Dongji;Kim, Jin-Wan;Nan, Yanghai;Ning, Qian;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3140-3141
    • /
    • 2008
  • The output power efficiency of the fuel cell system depends on the demanded current, stack temperature, air excess ratio, hydrogen excess ratio and inlet air humidity. Thus, it is necessary to determine the optimal operation condition for maximum power efficiency. In this paper, we developed a dynamic model of fuel cell system which contains mass flow model, diffusivity gas layer model, membrane hydration and electrochemistry model. In order to determine the maximum output power and minimum use of hydrogen in a certain power condition, response surface methodology (RSM) optimization based on the proposed PEMFC stack model is presented. The results provide an effective method to optimize the operation condition under varied situations.

  • PDF

Comparison of Lean Combustion Performance in a Spark-Ignition Engine Fueled with Natural Gas and Hydrogen (스파크점화 엔진에서 천연가스와 수소의 희박연소 성능 비교)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.204-211
    • /
    • 2021
  • Lean combustion performance of natural gas and hydrogen was compared in a spark-ignition engine. The lean combustion engine operation with natural gas was limited due to combustion instability at an excess air ratio (EAR) above 1.8. The total hydrocarbon (THC) emissions increased significantly with increasing EAR. The nitrogen oxides (NOX) emissions were also high due to the limitation of increasing EAR. The lean combustion engine operation with hydrogen showed superior combustion stability as well as low THC and NOX emissions, even at high EARs. However, boosting technology was required to reach the high EARs.

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion (미분탄 연소에서 NOx 저감을 위한 공기다단의 효과)

  • Jang, Gil-Hong;Chang, In-Gab;Sun, Chil-Young;Chon, Mu-Hwan;Yang, Gwan-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-154
    • /
    • 1999
  • The influences of air staging on NOx emission and burnout of coal flames were investigated using 1MWth combustion test facility. The experiments showed that variation of overall excess air ratio led to a relatively higher NOx emission level for ${\lambda}=1.2.$ When air staging was applied to the combustion air, it was confirmed that a fuel rich primary combustion zone was established and unburned char was burened completely by mixing with the staged air supplied radially around the flame. The NOx emissions were redued by increasing the staged air flow rate, and staging air was suggested to be more than 40% of the total combustion air for the substantial NOx reduction.

  • PDF

Dynamic Analysis of PEM fuel cell system (PEM 연료전지시스템의 동특성 해석)

  • Kim Beomsoo;Jeon Soonil;Lim Wonsik;Park Yeong-il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.353-356
    • /
    • 2005
  • We developed a dynamic model of PEM fuel cell system which can analyze its transient response to dynamic load current. System components such as compressor, air cooler, humidifier, and stack were modeled based on their dynamic equations and performance maps by using Matlab Simulink platform. Through this simulation model, dynamic characteristics of fuel cell system including oxygen excess rat io, stack voltage, and system efficiency were shown. In addition to that, we briefly analyzed the humidity effect on cathode pressure and system efficiency, expecting that this model can be further used to optimize fuel cell system parameters just like operating pressure and temperature, humidity and oxygen excess ratio.

  • PDF

An experimental study on the combustion characteristics using pure oxygen in a turbulent diffusion flame (순산소를 이용한 난류확산화염의 연소 특성에 관한 실험적 연구)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.60-66
    • /
    • 2001
  • Combustion using pure oxygen instead of air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and ultra high temperature flame, being used on the industrial spot. But information about it is not so enough yet. Flame figure, temperature distribution and emission concentration were measured with oxygen excess ratio and swirl number in a turbulent diffusion flame to investigate the combustion characteristics using pure oxygen. The results showed that flame figure became different as long as oxygen excess ratio varied and that concentration of NO and CO increased suddenly around ${\lambda}$=1.5.

  • PDF

Experimental study on combustion characteristics of high efficiency oxy-fuel burner (고효율 순산소 버너의 연소 특성에 관한 실험적 연구)

  • Kim, Se-Won;Ahn, Jae-Hyun;Kim, Min-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.57-64
    • /
    • 2002
  • This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

The Flame Stability and the Emission Characteristics of Turbulent Premixed Flat Burner (난류예혼합 플랫버너의 화염 안정성 및 배출가스 특성)

  • Lee, Y.H.;Lee, J.S.;Lee, D.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.1-8
    • /
    • 2007
  • The purpose of this study is to conduct a survey of the flame stability range and the emission characteristics for the optimum design of turbulent premixed flat burner. For that, the flame stability range was selected by the direct photography of the flame. And the mean temperature and CO, HC, $CO_{2}\;and\;O_{2}$ concentration distributions by changing the excess air ratio were measured. As results of this study, the flame stability range turned out to be getting narrower as fuel flow was increased. The blue flame mode was more excellent than any other flame modes in the emission characteristics by excess air ratio change. And the emission characteristics by fuel flow change were best at fuel flow 1l/min. Also, we found combustion noise during experiment of flame stability range. It had nothing do with excess air ratio range.

  • PDF

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.

A Study on Performance Characteristics of a Small-Sized Hydrogen-Fuelled Two-Stroke Engine (수소 연료를 적용한 소형 2행정 엔진 성능 특성에 관한 연구)

  • Kim, Yongrae;Kim, Seonyoeb;Oh, Sechul;Park, Cheolwoong;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.28-33
    • /
    • 2020
  • In this study the possibility of hydrogen as a fuel in a small-sized two-stroke SI (Spark ignition) engine was investigated. For this purpose, experimental setup including an engine, a dynamometer, equipments for hydrogen and lubricant oil supply was prepared. And then preliminary experiments for the hydrogen-fueled engine combustion were conducted. In the case of hydrogen-fueled engines comparing to gasoline backfire occurs when the excess air ratio is lower than a specific value. This can cause engine power reduction and damage to the engine parts. The engine was controlled to operate at lean conditions to prevent backfire. Through the control of excess air ratio, the maximum engine brake power output of 3 kW was achieved in a 210 cc engine, while it was 6 kW in case of gasoline fuel.