• Title/Summary/Keyword: Excess Temperature

Search Result 656, Processing Time 0.027 seconds

Major, Trace and Rare Earth Element Geochemistry, and Oxygen-Isotope Systematics of Illite/smectite in the Reindeer D-27 Well, Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트의 원소 지화학 및 산소동위원소 연구)

  • Ko, J.;Hesse, R.;Longstaffe, F.J.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.351-367
    • /
    • 1995
  • The elemental geochemistry and oxygen isotopes of illite/smectite (I/S) have been studied in relationship to the mineralogical trend in the Reindeer D-27 well, Beaufort-Mackenzie Basin. The increase in concentrations of $K_2O$, Rb and rare earth elements (REE), the decrease in concentrations of tetrahedral elements such as Mg, Ti, Sc, Zn and Zr, and the increase in concentrations of tetrahedral elements such as Be and V can be related to I/S compositions that vary systematically with depth. Layer formulae of S- and I-layers are estimated as $[Al_{1.57}Fe_{.19}Mg_{.31}Ti_{.07}][Si_{3.84}Al_{.16}]O_{10}(OH)_2$ and $[Al_{1.84}Mg_{.16}][Si_{3.33}Al_{.67}]O_{10}(OH)_2$, respectively. The mobilization of REE appears to occur during illitization. The increase in concentrations of REE, especially La and Ce, with depth is probably linked to incorporation of ions with high valency (e.g. $V^{5+}$) in tetrahedral sites. The excess valency due to V is partly counter-balanced by ions with low valency (e.g. $Be^{2+}$) and, in turn, the local valency deficiency caused by $Be^{2+}$ could be compensated by high-charge interlayer cations such as REE (+3). ${\delta}^{18}O$ values of I/S range from 2.91 to 15.72‰ (SMOW), and increase with depth, contrasting to trends observed in the Gulf Coast and elsewhere. The increase in ${\delta}^{18}O$ of I/S results from the rapid increase in ${\delta}^{18}O$ of pore water that overcomes the decrease in temperature-dependent fractionation values with increasing burial depth (${\delta}^{18}O_{pore\;water}>-d{\Delta}/_{I/S-water};\;d{\delta}^{18}O_{I/S}>0$). Calculated ${\delta}^{18}O$ values of pore water in equilibrium with I/S suggest that the original water was probably meteoric water. The stratification of pore water is postulated from the presence of an isotopically light interval, about 450m thick. The depth range of the isotopically light zone overlaps, but does not coincide with the interval of lowered I-content and $K_2O$ concentrations, suggesting that oxygens may have been exchanged independently of mineralogical and geochemical reactions.

  • PDF

Mineralization of Cattle Manure Compost at Various Soil Moisture Content (우분퇴비 시용후 토양수분 조절에 따른 질소 및 탄소의 전환)

  • Kim, P.J.;Chung, D.Y.;Chang, K.W.;Lee, B.L.
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.295-303
    • /
    • 1997
  • To investigate the transformation characteristics of nitrogen and carbon from cow manure compost amended in soil under different moisture conditions, dynamics of nitrogen and carbon were determined periodically for 15 weeks of aerobic incubation at room temperature during July${\sim}$November, 1996. Cow manure compost matured with mixing saw dust was amended with the 4 ratios (0, 2, 4, 6%(wt/wt)) in Ap horizon soil, which collected from green house in Yesan, Chungnam. Moisture was controlled with 0.2, 0.3, 0.4, and 0.5 of mass water conte nt (${\theta}$m) to air dried soil, and water loss was compensated at every sampling. During incubation, soil pH was decreased continuously, that was caused by hydrogen generated from nitrification of ammonium nitrogen. And pH became higher with inclining cow manure compost amendment and water treatment, that meaned the increase of mineralization of organic-N to $NH_4\;^+-N$. Total nitrogen was reduced with increasing water content, but total carbon showed the contrast tendency with that of nitrogen. Therefore, C/N ratio slightly decreased in the low water condition (${\theta}$m 0.2) during incubation, but increased continuously in high water condition over ${\theta}$m 0.4. As a result, it was assumed that soil fertility is able to be reduced in the high water content over available water content. Nitrate transformation rate increased lasting in the low water content less than ${\theta}$m 0.3. Itdropped significantly in the first $2{\sim}3$ weeks of incubation over ${\theta}$m 0.4. In particular, nitrate was not detected in ${\theta}$m 0.5 of water content after the first $2{\sim}3$ weeks. In contrast, ammonium transformation was inclined with increasing water treatment. Nitrogen mineralization rate, which calculated with percentage ratio of (the sum of ex.$NH_4\;^+-N$ and $NO_3\;^--N$)/total nitrogen, was continuously increased in the low water content of ${\theta}$m 0.2 and 0.3. But it saw the different patterns in high water content over ${\theta}$m 0.4 that was drastically declined in the initial stage and then gradually inclined . From the above results, nitrogen transformation patterns differentiated decisively in water content between ${\theta}$m 0.3 and 0.4 in soil. Thus, it is very important for the maintain of suitable soil water content to enhance fertility of soil amended with manure compost. However, excess treatment of manure compost might enhance the possibility of contamination of small watershed and ground water around agricultural area.

  • PDF

Physiological Response of Rice Plant under Environmental Stress -I. Nutritional disorder under soil reduction in paddy fields (환경장애(環境障碍)에 대(對)한 수도(水稻)의 생리반응(生理反應) -I. 농가포장(農家圃場)의 토양환원(土壤還元)에 의(依)한 영향장해(營養障害))

  • Park, Hoon;Mok, Sung Kyun;Kwon, Hang Gwang;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.115-127
    • /
    • 1973
  • Leaf discoloration of IR667 lines (tropical) and leading locals (temperate) in fields was classified according to the probable causes and nutritional disorder due to soil reduction in 1972 was investigated. 1. The causes of leaf discoloration in IR667 were low air temperature, soil reduction, seed born, insect bite, nitrogen depression, overdose pesticide, strong wind, early senescence and unknown one. 2. Leaf discoloration due to soil reduction which has been called Sageumbyeong by famers, was caused by the heavy application of $Ca(OH)_2$, compost and poor drainage followed by Zn and K deficiency and Fe toxicity. 3. About 30 days after transplanting deficiency concentration of K and Zn in leaf blade appears to be less than 2.0% and 20ppm respectively, and greater than 200ppm, 500ppm, and 1.0% respectively for toxicity or excess of Fe, Mn and Ca. and in the shoot 2.4% for K, 30ppm for Zn and 800ppm for Fe. The value of K/Ca should be greaterthan 2.0 for health. 4. When plants were damaged by soil reduction the contents of N, P, Ca, Mg, Fe, Mn, Na in shoot were increased and those of K, Zn, Si were decreased. 5. IR667 lines show in shoot higher content of N, P, Ca, Mg, Si, Na, and lower content K, Zn, Fe, Mn and lower root activity than local leading varietles in either healthy or disieased case, indicating IR667 lines are likely more suseptible to soil reduction damage. 6. Normal soil was less than 6.5 of pH and greater than -50 mv of Eh, but pH of problem soil was ranged from 6.7 to 7.4 and Eh from -100 to -190. 7. The root activity (${\alpha}$-naphthylamine oxidation) decreased at early stage of soil redudtion damage, then increased with severity and at the end it decreased again, but IR667 lines showed always lower root activity than local ones.

  • PDF

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF