• 제목/요약/키워드: Exceptional Monitoring

검색결과 17건 처리시간 0.019초

The in vivo photothermal treatment of gold nanorod in the mouse ear model

  • Liu, Bruce Yao Wen;Chen, Cheng-Lung;Lee, Shin-Yu;Chang, Fu-Hsiung;Lin, Win-Li;Chia, Chih-Ta;Chen, Yang-Yuan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권1호
    • /
    • pp.41-50
    • /
    • 2014
  • Gold nanorod's exceptional light to heat transduction is a robust phonomenon that has been extensively verified. The phenomenon is a trait from which many novel applications across disciplines have been proposed. In this investigation, the feasibility of utilizing heat harvested from such photothermal method to combat cancer is presented. Using non-invasive laser methods, an in vivo study is conducted on mouse ear tumors administered with gold nanorods (Au NRs). An emphasis is placed on monitoring the tumor developments after photothermal treatments, over time. The findings reveal significant tumor growth surpression at a threshold laser power of $0.6W/cm^2$ lasting 2 minutes; this energy also brought about dramatic size reduction in treated tumors. Furthermore, the apparent formation of an eschar over the laser treated region indicates extensive hemorrhagic necrosis of the tumor tissue; a phenomenon implicative to the inhibition of angiogenesis.

Asymmetric Capacitive Sensor for On-line and Real-time Partial Discharge Detection in Power Cables

  • Changhee Son;Hyewon Cheon;Hakson Lee;Daekyung Kang;Jonghoo Park
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.219-222
    • /
    • 2023
  • Partial discharges (PD) have long been recognized as a major contributing factor to catastrophic failures in high-power equipment. As the demand for high voltage direct current (HVDC) facilities continues to rise, the significance of on-line and real-time monitoring of PD becomes increasingly prominent. In this study, we have designed, fabricated, and characterized a highly sensitive and cost-effective PD sensor comprising a pair of copper electrodes with different arc lengths. The key advantage of our sensor is its non-invasive nature, as it can be installed at any location along the entire power cable without requiring structural modifications. In contrast, conventional PD sensors are typically limited to installation at cable terminals or insulation joint boxes, often necessitating invasive alterations. Our PD sensor demonstrates exceptional accuracy in estimating PD location, with a success rate exceeding 95% in the straight sections of the power cable and surpassing 89% in curved sections. These remarkable characteristics indicate its high potential for realtime and on-line detection of PD.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

하이브리드 발전 시스템을 적용한 이동식 하우스 (Transportable House with Hybrid Power Generation System)

  • 박미정;주종율;김응곤
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.205-212
    • /
    • 2023
  • 현대사회는 화석연료 등의 사용으로 기후변화로 인한 기상이변이 전 세계가 이례적인 피해가 속출하고, 코로나와 같은 전염병이 인간에게 더욱 생활의 질이 악화되고 있는 실정이다. 온실가스를 줄이고 신재생에너지 사용이 시급한 현실이다. 화석연료의 사용을 줄이고 신재생에너지 사용으로 지구환경 오염을 줄이고자 한다. 본 논문에서는 태양광을 이용해 지능형 CCTV 및 인터넷 WiFi, 냉난방 시스템을 통한 사계절 환경과 안전 및 통신 기능이 가능하고, 스마트폰 앱을 통한 태양광의 생산량과 소비량을 실시간으로 모니터링하여 최적화된 전력관리를 할 수 있는 시스템을 제안한다. 태양광 발전 시스템을 사용할 수 없는 한파, 태풍, 자연재해 등의 계통 정전과 같은 비상시 끊김 없는 디젤 발전을 지원하는 하이브리드 발전시스템을 제안한다.

해양산업시설의 위험유해물질 해양배출 규제체계 개선의 필요성과 규제방향에 대한 연구 (A Study on the Necessity and Direction of Regulations on the Emission of Hazardous and Noxious Substances from Marine Industrial Facilities)

  • 이문진;김계원;강원수
    • 해양환경안전학회지
    • /
    • 제27권6호
    • /
    • pp.737-743
    • /
    • 2021
  • 본 논문에서는 해양산업시설 현황과 규제법규 체계, 그리고 이들 시설의 위험유해물질 배출실태 등을 분석하고, 이에 따른 규제체계의 개선방향을 제시하였다. 분석결과 2020년말 현재, 해양환경관리법의 적용을 받는 해양산업시설은 약 1천1백여개소에 이르는 것으로 파악되고 있다. 이들 해양산업시설로부터 배출되어 해양유입 가능성이 높은 위험유해물질은 190여종으로 추정되며, 이중 해양유입의 가능성이 가장 높은 물질은 수계로 배출되는 것으로 파악된 20여종으로 추정된다. 그러나 관련 법규정의 미비로 인하여, 배출되는 물질이 예외적 배출물질에 해당하는지 여부를 명확히 판단하기가 어려워, 현장에서의 효과적인 규제집행에 어려움을 겪고 있는 실정이다. 이에 해양환경관리법의 예외적 배출기준과 해당 물질의 종류에 대해 명확히 규정해야 하며, 예외적 배출물질을 무엇으로 할 것인지를 결정할 선정체계와 물질의 위해성 평가체계, 그리고 관련 위험유해물질의 배출정보수집 및 모니터링체계를 명확히 해야 한다.

측정망 자료를 이용한 환경기준 대기오염물질의 권역별 단기 고농도 변화 추이 (Regional Trends in Short-Term High Concentrations of Criteria Pollutants from National Air Monitoring Stations)

  • 김영성;김찬혁
    • 한국대기환경학회지
    • /
    • 제29권5호
    • /
    • pp.545-552
    • /
    • 2013
  • While attainment rates for $SO_2$ and CO approached 100%, those for $PM_{10}$, $NO_2$, and $O_3$ have been low during the past decade. The attainment rates for 24-h $PM_{10}$ and 8-h $O_3$ have been only 1~3% and 5~12%, respectively, since the standards were strengthened in 2007. Variations in the 99th percentiles of 24-h $PM_{10}$, 8-h $O_3$, and 24-h $NO_2$, which are used as criteria for determining exceedance of standards, were examined by region. Because the analysis was based on short-term high-concentrations, the effects of Asian dust were observed for $PM_{10}$. Accordingly, it is necessary to specify whether exceptional events such as Asian dust will be included or not in determining the exceedances of standards. While variations in $NO_2$ were not large, there was an increasing trend in $O_3$. In the Yeongnam region, the increasing rate of $O_3$ concentrations was small although the decreasing rate of $NO_2$ was the greatest. In the Gangwon region, $NO_2$ concentrations were almost unchanged, but $O_3$ concentrations experienced a significant increase. Regional management strategies targeting short-term high concentrations of criteria pollutants analogous to the Special Act for the greater Seoul area will aid in improving attainment rates.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF