• Title/Summary/Keyword: Excavator task

Search Result 13, Processing Time 0.017 seconds

Decision of Optimal Platform Location Considering Work Efficiency -Optimization by Excavator Specification- (작업의 효율성을 고려한 최적 플랫폼 위치 선정 방안 -굴삭기 제원에 따른 최적화-)

  • Lee, Seung-Soo;Park, Jin-Woong;Seo, Jong-Won;Kim, Sung-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.790-793
    • /
    • 2008
  • Recently, Intelligent Excavating System(IES) for earthwork automation is on progress since the end of 2006 as a part of construction technology innovation projects in Ministry of Land, Transport and Maritime Affairs. Task Planning System(TPS), one of the detail core technologies of IES, is an optimal work planning system in conditions of effectiveness, safety and economic efficiency by analyzing the work environment data based on earthwork design and work environment recognition technology. For effective earthwork planning, the location of platform must be the most optimal spot for minimization of time, maximization of productivity and reduction of overlapped work spaces and unnecessariness. Besides, the decision of optimal platform location is to be based on the specifications and then is able to be converted with the local area calculation algorithm. This study explains the decision of optimal platform location on the basis of local area from the work space separate process and judges the effectiveness.

  • PDF

Development of the Local Area Design Module for Planning Automated Excavator Work at Operation Level (자동화 굴삭로봇의 운용단위 작업계획수립을 위한 로컬영역설계모듈 개발)

  • Lee, Seung-Soo;Jang, Jun-Hyun;Yoon, Cha-Woong;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.363-375
    • /
    • 2013
  • Today, a shortage of the skilled operator has been intensified gradually and the necessity of an earthwork in extreme environment operators are difficult to access is increasing for the purpose of resource development and new living space creation. For this reason, an effort to develop an unmanned excavation robot for fully automated earthwork system is continuing globally. In Korea, a research consortium called 'Intelligent Excavation System' has been formed since 2006 as a part of Construction Technology Innovation Program of Ministry of Land, Transport and Maritime Affairs of Korea. Among detailed technologies of the Task Planning System is one of the core technologies of IES, this paper explains research and development process of the Local Area Design Module, which provides informatization unit to create automated excavators' work command information at operation level such as location, range, target, and sequence for excavation work. Designing of Local Area should be considered various influential factors such as excavator's specification, working mechanism, heuristics, and structural stability to create work plan guaranteed safety and effectiveness. For this research, conceptual and detail design of the Local Area is performed for analyzing design element and variable, and quantization method of design specification corresponding with heuristics and structural safety is generated. Finally, module is developed through constructed algorithm and developed module is verified.

Development of Object Detection Algorithm Using Laser Sensor for Intelligent Excavation Work (자동화 굴삭기 작업을 위한 레이저 선서의 장애물 탐지 알고리즘 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop object detection algorithm for automated safety system in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability and verified its performance by several tests. The authors developed the objects detecting algorithm for user interface program using laser sensor. The results of this study would be the basis for developing the automated object detection system.

  • PDF