• 제목/요약/키워드: Excavation procedure

검색결과 72건 처리시간 0.039초

Application of numerical simulation for the analysis and interpretation of pile-anchor system failure

  • Saleem, Masood
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.689-707
    • /
    • 2015
  • Progressive increase in population causing land scarcity, which is forcing construction industry to build multistory buildings having underground basements. Normally, basements are constructed for parking facility. This research work evaluates important factors which have caused the collapse of pile-anchor system at under construction five star hotel. 21 m deep excavation is carried out, to have five basements, after installation of 600 mm diameter cast in-situ contiguous concrete piles at plot periphery. To retain piles and backfill, soil anchors are installed as pit excavation is proceeded. Before collapse, anchors are designed by federal highway administration procedure and four anchor rows are installed with three strands per anchor in first row and four in remaining. However, after collapse, system is modeled and analyzed in plaxis using mohr-coulomb method. It is investigated that in-appropriate evaluation of soil properties, additional surcharge loads, lesser number of strands per anchor, shorter grouted body length and shorter pile embedment depth caused large deformations to occur which governed the collapse of east side pile wall. To resume work, old anchors are assumed to be standing at one factor of safety and then system is analyzed using finite element approach. Finally, it is concluded to use four strands per anchor in first new row and five strands in remaining three with increase in grouted and un-grouted body lengths.

Parallel tunnel settlement characteristics: a theoretical calculation approach and adaptation analysis

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Abd Elmageed, Ahmed
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.225-237
    • /
    • 2022
  • Settlement evaluation is important for shallow tunnels in big cities to estimate the settlement that occurs due to the excavation of twin tunnels. The majority of earlier research on analytical solutions, on the other hand, concentrated on calculating the settlement for a single tunnel. This research introduces a procedure to evaluate the settlement induced by the excavation of twin tunnels (two parallel tunnels). In this study, a series of numerical analysis were performed to validate the analytical solution results. Two geological conditions were considered to derive the settlement depending on each case. The analytical and numerical methods were compared, which involved considering many sections and conducting a parametric study; the results have good agreement. Moreover, a comparison of the 3D flat model and 2D (FEM) with the analytical solution shows that in the fill soil, the maximum settlement values were obtained by the analytical solution. In contrast, the values obtained by the analytical solution in the rock is more conservative than those in the fill. Finally, this method was shown to be appropriate for twin tunnels dug side by side by utilizing finite element analysis 3D and 2D (PLAXIS 3D and PLAXIS 2D) to verify the analytical equations. Eventually, it will be possible to use this approach to predict settlement troughs over twin tunnels.

로드헤더의 굴착 원리와 데이터베이스를 활용한 로드헤더 핵심 설계 항목의 통계분석 (Excavation Mechanism of Roadheader and Statistical Analysis of its Key Design Parameters Based on Database)

  • 박영택;최순욱;박재현;이철호;장수호
    • 터널과지하공간
    • /
    • 제23권5호
    • /
    • pp.428-441
    • /
    • 2013
  • TBM을 적용하기 어려운 터널과 다양한 조건의 광산에서 기계 굴착장비인 로드헤더의 수요가 증가하고 있다. 하지만 우리나라에서 로드헤더의 적용 실적은 거의 전무하며, 일부 국가에서만 로드헤더의 설계 제작기술을 보유하고 있다. 따라서 본 연구에서는 로드헤더의 최적 선정과 설계를 위한 로드헤더의 굴착 원리 및 핵심설계항목들을 분석하였다. 또한 전 세계 143개의 로드헤더 설계 정보들을 데이터베이스화하고 로드헤더의 설계에 활용하기 위한 통계적인 상관관계들을 도출하였다. 마지막으로 데이터베이스에 기반하여 로드헤더를 설계하기 위한 절차를 제시하였다.

Nailed -Soil 굴착벽체의 발휘인장력 예측 (A Prediction of the Mobilized Tensile Forces of Nailed -Soil Excavated Walls)

  • 김홍택;성안제
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.79-98
    • /
    • 1995
  • 본 연구에서는 nailed-soil 굴착벽체의 거동특성 분석결과를 토대로, 벽체의 움직임 정도에 따라 네일-주변홀 사이에서 발휘되는 전단강도 예측을 위한 해석적 모델링이 이루어졌다. 또한 제시된 발휘전단강도 예측모델을 토대로, nailed-soil굴착벽체의 전체적인 안정성 평가를 위한 한계평형해석법이 Morgenstern-Price 절편법을 응용하여 제시되었다. 본 연구 제시 모델 및 해석법은, 굴착단계별로 또한 최종굴착시공 완료직후 및 장기적인 측면에서, nailed -soil굴착벽체의 거동예측이 가능하며 이에 대한 적합성 검토를 위해, 지반조건 등이 서로 다른 3개의 nailed-soil 실험벽체에 대해 제시된 설치네 일의 발휘인장력 측정결과 및 전체안정성 평가결과 등을 본 연구의 예측치와 비교.분석하였다. 본 연구 해석법에는 지반내부에 존재할 수 있는 침투수압의 영향이 포함되었다.

  • PDF

프리텐션 쏘일네일링 시스템의 거동특성에 관한 실험적 고찰 (An Experimental Study on Behavior Characteristics of the Pretension Soil Nailing Systems)

  • Choi, Young-Geun;Shin, Bang-Woong;Park, Si-Sam;Kim, Hong-Taek
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.87-96
    • /
    • 2004
  • 쏘일네일링 공법은 도심지 지하굴착 공사에 있어, 지중매설물이 인접하여 존재하거나 대지경계선 등의 준수 등 시공조건에 따라서 설치네일의 길이가 제한되는 경우 및 연약한 지반조건으로 구성된 사면을 보강할 경우 등과 같은 벽체변위 및 지표침하 억제와 안정성 증대 등을 위하여, 지반앵커공법(ground anchor system)과 유사한 프리텐션 방식의 도입이 필요한 실정이다. 지반앵커공법과 유사한 프리텐션(pretension) 방식의 쏘일네일링 공법을 도입하게 될 경우, 프리텐션 하중에 의해 네일 두부에 부착된 지압판 등은 전면벽체에 수동토압을 유발시키게 되므로, 일반 보일네일링 벽체에서 발생하는 주동토압을 어느 정도 경감시킬 수 있을 것으로 기대되며, 아울러 단계별 굴착시 발생하는 변위를 최소화할 수 있을 것으로 예상된다. 따라서, 본 연구에서는 단계별 굴착시 유발되는 벽체변위 및 침하량 등을 억제하기 위한 노력의 일환으로, 프리텐션 보일네일링 시스템을 개발하였다. 또한 본 연구에서는 실내모형실험을 토대로 프리텐션 쏘일네일링 벽체의 거동특성 및 발휘되는 토압 등을 정량적으로 분석하여 프리텐션 효과에 따른 쏘일네일링 벽체의 파괴유형을 규명하였다. 아울러, 프리텐션 효과가 쏘일네일링 벽체 안정성에 미치는 영향을 검토하여, 향후 예상되는 프리텐션 효과에 따른 수평토압 감소 및 주면마찰력 증가등의 지반-네일 상호작용을 고려한 해석기법개발에 필요한 기초적인 자료를 제시하고자 한다.

산악지형에서 효율적인 2-Arch 터널의 설계사례 (Practical 2-Arch Road Tunnel Design in Mountainous area)

  • 정경한;이주공;한성수;황용섭;김지성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.601-612
    • /
    • 2005
  • In mountainous area, Two parallel tunnels have been usually recognized as a road tunnel which has benefits in aspects of cost and stability. However, Design and construction of 2-Arch road tunnel are growing recently due to environmental destruction, compensation of land and difficulty of route separation. As studies are mainly undergoing on only guaranteeing stability and developing a waterproofing-drainage system to avoid water leakage through comprehension for characteristics of 2-arch tunnel behaviors, there is a tendency to evaluate quantity of support by empirical method with a tunnel which has a complicated cross-section and lack of construction ability. In this study, therefore, we made a plan of tunnel cross-section which had shown good construction ability and developed the waterproofing-drainage system which is able to solve the water leakage problem fundamentally by analyzing precedented 2-arch tunnels and investigating their sites in and out of nation. We also determined fixed quantity of support by a large-scale model test and numerical analysis. We want to contribute to 2-arch tunnel design hereafter introducing design procedure and method applied here.

  • PDF

프리텐션 효과에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰 (An Experimental Study on Behavior Characteristics of the Soil Nailed Wall with Effects of the Pretension Force)

  • 김홍택;최영근;박시삼;김범석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.61-68
    • /
    • 2003
  • In this study, a newly modified soil nailing technology named as the pretension soil nailing system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the pretension soil nailing system, has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the pretension soil-nailed wall. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.

  • PDF

Evaluation of the rock property around TBM tunnels using seismic reflective survey data and TBM driving data

  • Aoki Kenji;Mito Yoshitada;Yamamoto Takuji;Shirasage Suguru
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.288-295
    • /
    • 2003
  • The relationship between the reflection number obtained from seismic reflective survey and the rock strength value obtained from TBM excavation is examined, and the procedure of the conversion from the reflection number to the rock strength value is proposed. Subsequently, geostatistical method is employed to evaluate the rock properties ahead of the tunnel face and around the tunnel with good precision, using both the seismic reflective survey data and the TBM driving data for the purpose of the tunnel driving and enlargement. The applicability of this evaluation method is examined at the actual tunnel site.

  • PDF

그라우팅 강화터널의 설계 특성치 산정에 관한 연구 (Estimation of the Anisotropic Material Properties of Rock Masses with Permeation Grouting)

  • 이준석;방춘석;최일윤;엄주환
    • 자연, 터널 그리고 지하공간
    • /
    • 제1권1호
    • /
    • pp.67-80
    • /
    • 1999
  • The Grout-reinforcement technique which is widely used during the excavation of a shallow or an endangered tunnel can be classified into a couple of groups according to the properties and injection methods of the grout. The reinforcement design will, therefore, take a different approach based on the grouting method under consideration. However, the injection procedure is mainly performed by the experience of the foreman rather than engineering judgement , specifically the permeation grouting through the rock joints and its reinforcement effect Is not fully under-stood during the design stage, In this study, the anisotropic material properties of the grout-reinforced rock masses are derived from the concept of composite materials and the effect of intact rock, vertical grouting and permeation grouting is, therefore, fully accounted for. Through the parametric studies on the characteristics of rock joints, intact rock and grouting materials, various case studies have been considered. The results, illustrated via the design charts, can be directly used during the reinforcement design.

  • PDF

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2007년도 특별심포지엄 논문집
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF