• Title/Summary/Keyword: Excavation performance

Search Result 210, Processing Time 0.024 seconds

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

Effect of hardfacing on wear reduction of pick cutters under mixed rock conditions

  • Chang, Soo-Ho;Lee, Chulho;Kang, Tae-Ho;Ha, Taewook;Choi, Soon-Wook
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.141-159
    • /
    • 2017
  • A pick cutter is a rock-cutting tool used in partial-face excavation machines such as roadheaders, and its quality is a key element influencing the excavation performance and efficiency of such machines. In this study, pick cutters with hardfacing deposits applied to a tungsten carbide insert were made with aim of increasing their durability and wear resistance. They were field-tested by being installed in a roadheader and compared with conventional pick cutters under the same excavation conditions for 24 hours. The hardfaced pick cutters showed much smaller weight loss after excavation, and therefore better excavation performance, than the conventional pick cutters. In particular, the damage to and detachment (loss) of tungsten carbide inserts was minimal in the hardfaced pick cutters. A detailed inspection using scanning electron microscope-energy dispersive X-ray spectrometry and three-dimensional X-ray computed tomography scanning revealed no macro- or micro-cracks in the pick cutters. The reason for the absence of cracks may be that the heads of pick cutters are mechanically worn after the tungsten carbide inserts have been worn and damaged. However, scanning revealed the presence of voids between tungsten carbide inserts and pick cutter heads. This discovery of voids indicates the need to improve production processes in order to guarantee a higher quality of pick cutters.

Determination of priorities for management to reduce collapse accident of open excavation and road sink in urban areas (도심지 개착식 굴착공사 붕괴사고 및 도로함몰 저감을 위한 우선 관리 요소 결정)

  • Seong, Joo-Hyun;Jung, Min-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.489-501
    • /
    • 2017
  • The collapse accidents during a open ground excavation in urban areas not only lead to human injuries and material damages in the construction site, but also lead to road sinks and damages to the adjacent facilities due to settlement of ground around the construction site. Therefore, during a open ground excavation in the urban areas, it is necessary to thoroughly prepare for prevention of collapse accidents, and consider whole construction stage such as planning, design and construction. In this study, the priorities to be managed mainly were obtained in order to prevent collapse accidents during a open ground excavation. After analyzing results from past accidents cases for open ground excavations, priorities were evaluated regarding collapse-inducing elements using the Delphi technique which is a decision-making method by consensus among experts. As a result, insufficient groundwater treatment, bad geotechnical investigation and instability on construction, etc. were obtained as priorities for prevention of collapse accidents.

Stability of the Innovative Prestressed wale System Applied in Urban Excavation (도심지 굴착에 적용된 IPS 띠장의 안정성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Jang, Ho-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • The stability of innovative prestressed wale system applied in urban excavation was investigated. The IPS is a wale system prestressed by tension of steel wires. The IPS consists of steel wires, H-beam support and wale. The IPS provides a high flexural stiffness to resist the bending moment caused by earth pressures. And the IPS transmits earth pressures due to excavation to corner struts. The IPS provides a larger spacing of support, economical benefit, construction easiness, good performance and safety control. This paper explains basic concept and mechanism of the IPS and presents the measured performances of the IPS applied in urban excavation. In order to investigate applicability and stability of the IPS in urban excavation, observations and measurements in site were performed. The IPS applied in urban excavation was performed successfully. The results of the field instrumentation were presented. The measured performances of the IPS were investigated. And behavior of the wall and corner struts was investigated.

Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground (토사지반 EPB TBM의 굴진성능 및 커팅툴 마모량에 관한 실험장비 개발 및 기초연구)

  • Kim, Dae-Young;Kang, Han-Byul;Shin, Young Jin;Jung, Jae-Hoon;Lee, Jae-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.453-467
    • /
    • 2018
  • The excavation performance and the cutting tool wear prediction of shield TBM are very important issues for design and construction in TBM tunneling. For hard-rock TBMs, CSM and NTNU model have been widely used for prediction of disc cutter wear and penetration rate. But in case of soft-ground TBMs, the wear evaluation and the excavation performance have not been studied in details due to the complexity of the ground behavior and therefore few testing methods have been proposed. In this study, a new soil abrasion and penetration tester (SAPT) that simulates EPB TBM excavation process is introduced which overcomes the drawbacks of the previously developed soil abrasivity testers. Parametric tests for penetration rate, foam mixing ratio, foam concentration were conducted to evaluate influential parameters affecting TBM excavation and also ripper wear was measured in laboratory. The results of artificial soil specimen composed of 70% illite and 30% silica sand showed TBM additives such as foam play a key role in terms of excavation and tool wear.

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

Ground support performance in deep underground mine with large anisotropic deformation using calibrated numerical simulation (case of mine-H)

  • Hu, Bo;Sharifzadeh, Mostafa;Feng, Xia-Ting;Talebi, Roo;Lou, Jin-Fu
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.551-564
    • /
    • 2020
  • High-stress and complex geological conditions impose great challenges to maintain excavation stability during deep underground mining. In this research, large anisotropic deformation and its management by support system at a deep underground mine in Western Australia were simulated through three-dimensional finite-difference model. The ubiquitous-joint model was used and calibrated in FLAC3D to reproduce the deformation and failure characteristics of the excavation based on the field monitoring results. After modeling verification, the roles of mining depth also the intercept angle between excavation axis and foliation orientation on the deformation and damage were studied. Based on the results, quantitative relationships between key factors and damage classifications were presented, which can be used as an engineering tool. Subsequently, the performance of support system installation sequences was simulated and compared at four different scenarios. The results show that, first surface support and then reinforcement installation can obtain a better controlling effect. Finally, the influence of bolt spacing and ring spacing were also discussed. The outcomes obtained in this research may play a meaningful reference for facing the challenges in thin-bedded or foliated ground conditions.

Continuous Excavation Type TBM Parts Modification and Control Technology for Improving TBM Performance (TBM 굴진향상을 위한 연속굴착형 TBM 부품개조 및 제어기술 소개)

  • Young-Tae, Choi;Dong-Geon, Lee;Mun-Gyu, Kim;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.345-352
    • /
    • 2022
  • The existing NATM (New Austrian Tunneling Method) has induced civil compliants due to blasting vibration and noise. Machanized excavation methods such as TBM (Tunnel Boring Machine) are being adopted in the planning and construction of tunneling projects. Shield TBM method is composed of repetition processes of TBM excavation and segment installation, the machine has to be stopped during the later process. Consecutive excavation technology using helical segment is under developing to minimize the stoppage time. The modification of thrust jacks and module are planned to ensure the advance force acting on the inclined surface of helical segment. Also, the integrated system design of hydraulic circuit will be remodeled. This means that the system deactivate the jacks on the installing segment while the others automatically act the thrusting forces on the existing segments. This report briefly introduces the mechanical research part of the current consecutive excavation technological development project of TBM.

A constant angle excavation control of excavator's attachment using neural network (신경 회로망을 이용한 유압 굴삭기의 일정각 굴삭 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.151-155
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbance and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

Excavation Control of a Hydraulic Excavator with Fuzzy Logic Controller (퍼지 제어기를 이용한 유압 굴삭기의 굴삭 제어)

  • Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2763-2765
    • /
    • 2000
  • The interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition. operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a fuzzy logic controller (FLC) which controls the position of excavator's attachment. This approach enables the transfer of human heuristics and expert knowledge to the controller. Expeiments are carried out to check the performance of the FLC.

  • PDF