• 제목/요약/키워드: Evolutionary Simulation

검색결과 189건 처리시간 0.021초

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu;Xie, Yi Min;Felicetti, Peter
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.21-35
    • /
    • 2014
  • The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

Design of Genetic Algorithm-based Parking System for an Autonomous Vehicle

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.275-280
    • /
    • 2009
  • A Genetic Algorithm (GA) is a kind of search techniques used to find exact or approximate solutions to optimization and searching problems. This paper discusses the design of a genetic algorithm-based intelligent parking system. This is a search strategy based on the model of evolution to solve the problem of parking systems. A genetic algorithm for an optimal solution is used to find a series of optimal angles of the moving vehicle at a parking space autonomously. This algorithm makes the planning simpler and the movement more effective. At last we present some simulation results.

이동 통신 네트워크에서의 듀얼 호밍 셀 스위치 할당을 위한 유전자 알고리듬 (A Genetic Algorithm for Assignments of Dual Homing Cell-To-Switch under Mobile Communication Networks)

  • 우훈식;황선태
    • Journal of Information Technology Applications and Management
    • /
    • 제13권2호
    • /
    • pp.29-39
    • /
    • 2006
  • There has been a tremendous need for dual homing cell switch assignment problems where calling volume and patterns are different at different times of the day. This problem of assigning cells to switches in the planning phase of mobile networks consists in finding an assignment plan which minimizes the communication costs taking into account some constraints such as capacity of switches. This optimization problem is known to be difficult to solve, such that heuristic methods are usually utilized to find good solutions in a reasonable amount of time. In this paper, we propose an evolutionary approach, based on the genetic algorithm paradigm, for solving this problem. Simulation results confirm the appropriateness and effectiveness of this approach which yields solutions of good quality.

  • PDF

현대 건축 디자인에서의 생물학적 형태의 적용에 관한 연구 (A Study on the Application of Biomorphism on Contemporary Architectural Design)

  • 김원갑
    • 한국실내디자인학회논문집
    • /
    • 제15권1호
    • /
    • pp.30-38
    • /
    • 2006
  • The new aspect of contemporary architectural design is the computer simulation of morphogenesis and evolution of the organic body. Morphogenesis and evolution is the kind of emergence that is the process of complex pattern formation from simpler rules in complex system. The development comprises the sequence of pattern formation, differentiation, morphogenesis, growth. This study analyzes the application methodology of various biomorphism in contemporary architecture. The methods of generative application by computation in architecture are self-organization, differentiation, growth algorithm via MoSS. And the methods of evolution by computation are genetic algorithm, multi-parameter in environments, phylogenetic cross-over, competing as natural selection, mutation+external constraints, generative algorithm+genetic algorithm via Genr8.

진화 신경회로망 제어기를 이용한 도립진자 시스템의 안정화 제어에 관한 연구 (A Study on Stabilization Control of Inverted Pendulum System using Evolving Neural Network Controller)

  • 김민성;정종원;성상규;박현철;심영진;이준탁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.243-248
    • /
    • 2001
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Thus, in this paper, an Evolving Neural Network Controller(ENNC) without Error Back Propagation(EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC) are compared with the ones of conventional optimal controller and the conventional evolving neural network controller(CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

An evolutionary approach for structural reliability

  • Garakaninezhad, Alireza;Bastami, Morteza
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.329-339
    • /
    • 2019
  • Assessment of failure probability, especially for a complex structure, requires a considerable number of calls to the numerical model. Reliability methods have been developed to decrease the computational time. In this approach, the original numerical model is replaced by a surrogate model which is usually explicit and much faster to evaluate. The current paper proposed an efficient reliability method based on Monte Carlo simulation (MCS) and multi-gene genetic programming (MGGP) as a robust variant of genetic programming (GP). GP has been applied in different fields; however, its application to structural reliability has not been tested. The current study investigated the performance of MGGP as a surrogate model in structural reliability problems and compares it with other surrogate models. An adaptive Metropolis algorithm is utilized to obtain the training data with which to build the MGGP model. The failure probability is estimated by combining MCS and MGGP. The efficiency and accuracy of the proposed method were investigated with the help of five numerical examples.

Multi-time probability density functions of the dynamic non-Gaussian response of structures

  • Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.631-641
    • /
    • 2020
  • In the present work, an approach for the multiple time probabilistic characterization of the response of linear structural systems subjected to random non-Gaussian processes is presented. Its fundamental property is working directly on the multiple time probability density functions of the actions and of the response. This avoids of passing through the evaluation of the response statistical moments at multiple time or correlations, reducing the computational effort in a consistent measure. This approach is the extension to the multiple time case of a previously published dynamic Probability Transformation Method (PTM) working on a single evolution of the response statistics. The application to some simple examples has revealed the efficiency of the method, both in terms of computational effort and in terms of accuracy.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.25-33
    • /
    • 2019
  • 본 논문은 목표한 방향으로 자유롭게 기동할 수 있는 새 크기의 물리기반 날갯짓 비행로봇 시뮬레이션을 위한 동역학적 신경망 컨트롤러를 생성하는 통합적인 진화연산 방법을 제시한다. 제안된 진화로봇 시스템은 날갯짓 비행의 추가적인 민첩성과 안정성을 위하여 Morphological Computation 개념을 응용한 간단한 날개 순응성 모델과 그와 통합된 Mechanosensory 정보를 활용한다. 역학적으로 불안정한 날갯짓 기동의 안정성 개선을 위해 로봇의 날개는 회전스프링으로 팔의 골격에 연결된 여러개의 패널들로 모델링되어, 새의 깃털에서 영감을 받은 단순한 형태의 날개 유연성을 시뮬레이션 하도록 설계되었다. 신경망 컨트롤러 역시 생물학적으로 의미있는 좌우대칭적 연결구조를 가짐과 동시에 최대의 진화연산 탐색 가능성을 위해 두 개의 fully-connected 신경망 모듈로 이루어지며, 이를 위한 센서정보로서 항법센서와 더불어 각 날개패널의 움직임 보들이 입력되어진다. 이러한 설계는 각 패널센서로 하여금 잠재적으로 신경망의 날갯짓 패턴 생성에 관여하게 함과 동시에, 날개에 가해지는 힘의 감지와 패널의 굽어짐으로 인한 날개 순응성으로부터 얻을 수 있는 비행의 민첩성과 안정성 향상을 동시에 유도할 수 있다. 본 시스템으로 진화된 날갯짓 로봇은 실시간으로 주어지는 목표방향으로의 효과적인 기동과 함께, 외부의 공기역학적 섭동에 대하여도 더욱 안정적인 비행을 유지함을 보여준다.

진화계산 기반 인공에이전트를 이용한 교섭게임 (Bargaining Game using Artificial agent based on Evolution Computation)

  • 성명호;이상용
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.293-303
    • /
    • 2016
  • 근래에 진화 연산을 활용한 교섭 게임의 분석은 게임 이론 분야에서 중요한 문제로 다루어지고 있다. 본 논문은 교섭 게임에서 진화 연산을 사용하여 이기종 인공 에이전트 간의 상호 작용 및 공진화 과정을 조사하였다. 교섭게임에 참여하는 진화전략 에이전트들로서 유전자 알고리즘(GA), 입자군집최적화(PSO) 및 차분진화알고리즘(DE) 3종류를 사용하였다. GA-agent, PSO-agent 및 DE-agent의 3가지 인공 에이전트들 간의 공진화 실험을 통해 교섭게임에서 가장 성능이 우수한 진화 계산 에이전트가 무엇인지 관찰 실험하였다. 시뮬레이션 실험결과, PSO-agent가 가장 성능이 우수하고 그 다음이 GA-agent이며 DE-agent가 가장 성능이 좋지 않다는 것을 확인하였다. PSO-agent가 교섭 게임에서 성능이 가장 우수한 이유를 이해하기 위해서 게임 완료 후 인공 에이전트 전략들을 관찰하였다. PSO-agent는 거래 실패로 인해 보수를 얻지 못하는 것을 감수하고서라도 가급적 많은 보수를 얻기 위한 방향으로 진화하였다는 것을 확인하였으며, 반면에 GA-agent와 DE-agent는 소량의 보수를 얻더라도 거래를 성공시키는 방향으로 진화하였다는 것을 확인하였다.