• 제목/요약/키워드: Evolution Algorithm

검색결과 642건 처리시간 0.023초

Application of Opposition-based Differential Evolution Algorithm to Generation Expansion Planning Problem

  • Karthikeyan, K.;Kannan, S.;Baskar, S.;Thangaraj, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.686-693
    • /
    • 2013
  • Generation Expansion Planning (GEP) is one of the most important decision-making activities in electric utilities. Least-cost GEP is to determine the minimum-cost capacity addition plan (i.e., the type and number of candidate plants) that meets forecasted demand within a pre specified reliability criterion over a planning horizon. In this paper, Differential Evolution (DE), and Opposition-based Differential Evolution (ODE) algorithms have been applied to the GEP problem. The original GEP problem has been modified by incorporating Virtual Mapping Procedure (VMP). The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units have been considered. The results have been compared with Dynamic Programming (DP) method. The ODE performs well and converges faster than DE.

대규모 협동진화 차등진화 (Large Scale Cooperative Coevolution Differential Evolution)

  • 신성윤;탄쉬지에;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.665-666
    • /
    • 2022
  • 미분 진화는 연속 최적화 문제에 대한 효율적인 알고리즘이다. 그러나 대규모 최적화 문제를 해결하기 위해 미분 진화를 적용하면 성능이 빠르게 저하되고 런타임이 기하급수적으로 증가한다. 이 문제를 극복하기 위해 Spark(SparkDECC라고 함)를 기반으로 하는 새로운 협력 공진화 미분 진화를 제안한다. 분할 정복 전략은 SparkDECC에서 사용된다.

  • PDF

협력적 공진화 차등진화 (Cooperative Coevolution Differential Evolution)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.559-560
    • /
    • 2021
  • 차등 진화는 연속 최적화 문제를 해결하기 위한 효율적인 알고리즘이다. 그러나 대규모 최적화 문제를 해결하기 위해 차등 진화를 적용하면 성능이 급격히 저하되고 런타임이 기하급수적으로 증가한다. 따라서 Spark(SparkDECC로 알려짐)를 기반으로 하는 새로운 협력 공진화 차동 진화가 제안된다. 분할 정복 전략은 SparkDECC에서 사용된다.

  • PDF

개념학습을 위한 논리적 진화방식 (Logical Evolution for Concept Learning)

  • 박명수;최진영
    • 전자공학회논문지CI
    • /
    • 제40권3호
    • /
    • pp.144-154
    • /
    • 2003
  • 이 논문에서는, 이진 논리 함수(binary logic function)로 표현되는 개념들에 대한 새로운 학습방법인 논리적 진화방식(Logical Evolution)을 제안하였다. 그리고 이 방법을 통해 기존 귀납학습의 문제점들을 해결하고자 시도하였다. 사용하는 특징이 사전지식의 영향을 적게 받도록, 학습과정에서 얻어진 정보를 이용하여 특징을 생성하고 동시에 이를 이용하여 학습한다. 그리고 전체 자료가 아니라 개별 자료를 이용하여 특징생성 및 학습을 수행한다. 그 결과 새로운 문제가 주어지거나 입출력이 변경되는 경우에도, 이전의 특징을 재사용할 수 있으며 겨우에 따라서는 보다 효율적인 학습이 가능하다. 논리적 진화방식은 5가지 연산으로 구성되며, 이러한 연산들은 특징생성 및 학습 과정에서 논리적 평가방식(logical evaluation)에 의해 적절하게 선택되고 실행된다. 제안된 방법의 성능을 평가하기 위해서 MONK 문제와 새로 정의한 다른 문제를 이용하였다.

DNA 컴퓨팅과 진화 모델을 이용하여 Traveling Salesman Problem를 해결하기 위한 DNA 서열 생성 알고리즘 (A DNA Sequence Generation Algorithm for Traveling Salesman Problem using DNA Computing with Evolution Model)

  • 김은경;이상용
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.222-227
    • /
    • 2006
  • 현재 막대한 병렬성을 갖는 DNA 컴퓨팅을 이용하여 Traveling Salesman Problem (TSP)를 해결하기 위한 연구가 진행되고 있다. 하지만 기존의 방법은 그래프 문제의 표현에서 DNA의 특성을 고려하지 않아, 실제 생물학적 실험 결과와의 차이가 발생하고 있다. 따라서 DNA의 특성을 반영하고 생물학적 실험 오류를 줄일 수 있는 DNA 서열 생성 알고리즘이 필요하다. 본 논문에서는 DNA 컴퓨팅에 진화 모델의 하나인 DNA 코딩 방법을 적용한 DNA 서열 생성 알고리즘을 제안한다. 제안한 알고리즘은 TSP에 적용하여 기존에 단순 유전자 알고리즘과 비교하였다. 그 결과 제안한 알고리즘은 오류를 최소화한 우수한 서열을 생성하고 생물학적 실험 오류율도 줄일 수 있었다.

연속 최적화를 위한 개선된 MAP-Elites 알고리즘 (An Improved MAP-Elites Algorithm via Rotational Invariant Operator in Differential Evolution for Continuous Optimization)

  • 최태종
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.129-135
    • /
    • 2024
  • 이 연구에서는 MAP-Elites 알고리즘의 연속 최적화 성능을 향상한 새로운 접근법을 제안한다. 기존의 자기 참조 MAP-Elites 알고리즘은 차분 진화 알고리즘의 "DE/rand/1/bin" 연산자를 사용했는데, 이 연산자는 회전 불변이 아니라서 각 변수 간의 상관관계가 높은 경우 성능이 감소하는 문제가 존재한다. 제안하는 알고리즘은 "DE/rand/1/bin" 연산자 대신에 "DE/current-to-rand/1" 연산자를 사용한다. 이 연산자는 회전 불변성을 가지므로 각 변수 간의 상관관계가 높은 분리 불가능 최적화 문제에서도 강건한 성능을 보장할 수 있다. 실험 결과, 제안하는 알고리즘이 비교 알고리즘들에 비해 높은 성능을 발휘함을 확인했다.

미분진화 기반의 초단기 호우예측을 위한 특징 선택 (Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution)

  • 서재현;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.706-714
    • /
    • 2012
  • 본 논문에서는 대한민국의 국립기상연구소에서 제공한 최근 4년간의 데이터를 훈련 데이터, 검증 데이터 및 테스트 데이터로 나누어 초단기 호우 예측을 하고자 한다. 우리는 데이터 셋을 훈련 데이터, 검증 데이터와 테스트 데이터 세 부분으로 나눴다. 데이터의 차원이 커짐에 따라 해 공간의 크기가 지수적으로 증가하여 실험의 속도가 현저히 떨어지는 문제를 피하기 위하여 72개의 특징들 중에서 주요한 특징들만을 선택하게 되었다. 예측의 정확도를 높이기 위해 미분진화 알고리즘을 사용하였고, 진화연산의 적합도 함수로 두 개의 분류기를 선택하였는데, 일반적으로 우수한 성능을 보이는 서포트 벡터 머신(SVM)과 분류 속도가 빠른 최근린법(k-NN)을 사용하였다. 또한, 실험에 사용할 데이터 가공을 위해 언더샘플링과 정규화를 하였다. 진화연산의 적합도 함수로 SVM 분류기를 사용하였을 때 실험 결과가 대체로 우수하였는데, 미분진화 알고리즘 실험은 모든 특징을 선택한 실험보다 약 5 배 정도 우수한 성능을 보였고, 유전 알고리즘을 사용한 실험보다 약 1.36 배 정도 더 우수한 성능을 보였다. 실험 속도 면에서는 미분진화 알고리즘을 사용한 실험이 유전 알고리즘을 사용한 실험보다 약 20배 이상 실험 시간이 단축되었다.

Performance Comparison of GA, DE, PSO and SA Approaches in Enhancement of Total Transfer Capability using FACTS Devices

  • Chandrasekar, K.;Ramana, N.V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 2012
  • In this paper the performance of meta-heuristics algorithms such as GA (Genetic Algorithm), DE (Differential Evolution), PSO (Particle Swarm Optimization) and SA (Simulated Annealing) for the problem of TTC enhancement using FACTS devices are compared. In addition to that in the assessment procedure of TTC two novel techniques are proposed. First the optimization algorithm which is used for TTC enhancement is simultaneously used for assessment of TTC. Second the power flow is done using Broyden - Shamanski method with Sherman - Morrison formula (BSS). The proposed approach is tested on WSCC 9 bus, IEEE 118 bus test systems and the results are compared with the conventional Repeated Power Flow (RPF) using Newton Raphson (NR) method which indicates that the proposed method provides better TTC enhancement and computational efficacy than the conventional procedure.

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

진화전략을 이용한 PMSM의 노이즈 저감 센서리스 속도제어 (Speed Sensorless Control of PMSM for Noise Rejection Using Evolution Strategy)

  • 이동희;손문경;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2499-2501
    • /
    • 1999
  • Most of sensorless algorithm are based on motor equations where it is necessary to find the phase voltage and current. However, measurement error and environmental noise deteriorate the accuracy of speed estimation of PMSM. This paper investigates speed sensorless control of PMSM for noise rejection in harsh environment. The proposed algorithm is based on the interaction between electrical parameter and random noise. The evolution strategy is used for minimizing the noise effect. The proposed algorithm is verified through simulation and experiment.

  • PDF