• 제목/요약/키워드: Evaporative Cooling

검색결과 120건 처리시간 0.023초

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • 국제초고층학회논문집
    • /
    • 제12권4호
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.

재생 입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향 (Effects of performance analysis of a desiccant cooling system with a direct evaporative cooler in the regeneration process)

  • 다쉬울찌우타스;오명도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.633-638
    • /
    • 2009
  • In this study the performance analysis and cooling capacity of desiccant cooling system incorporating regenerative cooler and direct evaporative cooler in the regeneration air inlet were investigated on the condition of low regeneration temperature and time rotation 180s and area ratio of regeneration to dehumidification section 0.7. The cooling capacity and COP are evaluated at various effectiveness values of the direct evaporative cooler or the regenerative evaporative cooler. As either of effectiveness of the regenerative and direct evaporative coolers of desiccant cooling system increases, both the cooling capacity and COP increase, but effectiveness value of regenerative cooler gives the opposite effect on the system performance. It is found that effectiveness of regenerative cooler less than 0.7 shows the optimum cooling capacity.

  • PDF

재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석 (Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler)

  • 이재완;이대영;강병하
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.

증발수 유량이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of Evaporation Water Flow Rate on the Performance of an Indirect Evaporative Cooler)

  • 추현선;이관수;이대영
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.714-721
    • /
    • 2006
  • In evaporative cooling applications, the evaporation water is supplied usually sufficiently larger than the amount evaporated to enlarge contact surface between the water and the air. Especially in indirect evaporative coolers, however, if the evaporation water flow rate is excessively large, the evaporative cooling effect is not used for heat absorption from the hot fluid but spent to the sensible cooling of the evaporation water itself. This would result in a decrease in the cooling performance of the indirect evaporative cooler. In this study, the effects of the evaporation water flow rate on the cooling performance are investigated theoretically. The cooling process in an indirect evaporative cooler is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and the evaporation water. Based on the exact solutions, it is analyzed how much the cooling performance is affected by the evaporation water flow rate. The results show that the decrease in the cooling effectiveness is substantial even for a small flow rate of the evaporation water and the relative decrease is more serious for a high-performance evaporative cooler.

태양열 이용 소용량 제습냉방시스템 (Small-Capacity Solar Cooling System by Desiccant Cooling Technology)

  • 이대영;권치호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Study of Large Wind Power Generator with Evaporative Cooling System

  • Wang, Haifeng;Li, Wang;Guo, Hui;Yang, Jie;Gu, Guobiao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.93-97
    • /
    • 2014
  • Evaporative cooling system has the advantage of high cooling performance, good insulation properties, less electrical fault, easy to maintain and high reliability, can meet the requirements of the cooling system in wind power generators. Based on a large number of theoretical researches and engineering practices, we had a comprehensive study of evaporative cooling wind power generator. Studies show that evaporative cooling system has advantage as the cooling system of wind power generator.

증발냉각시스템의 온실냉방 적용성 평가 (Adaptability of Evaporative Cooling System for Greenhouses to the Weather Conditions of Korea)

  • 남상운
    • 생물환경조절학회지
    • /
    • 제7권4호
    • /
    • pp.283-289
    • /
    • 1998
  • 우리 나라의 기후구분에 따른 대표적인 9개 지역의 20년간(1975~1994) 기상자료를 기초로 여름철 고온기(6, 7, 8월) 온실에 대한 증발냉각시스템의 적용성을 퍼지이론에 의하여 종합적으로 평가해 보았다. 남부서해안과 남해안, 제주도 등 일부지역을 제외한 대부분 지역에서 증발냉각시스템을 이용하여 온실의 실내온도를 32.5$^{\circ}C$ 이내로 제어하는 것이 가능하며, 증발냉각시스템에서의 냉각범위가 5$^{\circ}C$이상으로 나타났다. 본 논문에서 분석한 결과는 환기시스템이 잘 갖추어진 것을 전제로 하였으므로 증발냉각시스템을 적용할 경우에는 충분한 기계환기시스템을 갖출 필요가 있다. 우리 나라의 여름철 기후는 고온다습하지만 증발냉각시스템의 적용성은 충분히 큰 것으로 판단되므로 확대보급을 위한 기술의 체계화 연구가 지속적으로 이루어져야 할 것으로 판단된다.

  • PDF

재생입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향 (Effects of Performance Analysis of a Desiccant Cooling System with a Direct Evaporative Cooler in the Inlet of Regeneration Process)

  • 다쉬 울찌우타스;성상철;오명도;이대영
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.328-335
    • /
    • 2010
  • The purpose of this study is to make an analysis of influence on the cooling capacity and COP of a desiccant cooling system with a regenerative evaporative cooler when a direct evaporative cooler was applied to the inlet of regeneration process of this system. We used cycle simulation in order to analyze the performance of this system. From the cycle simulation, we knew that the optimal rotation time of desiccant rotor was between 160s and 220s and hardly ever affected cooling capacity of desiccant cooling system when this system was operated at the outdoor air condition of $35^{\circ}$ and 40% RH and low regeneration temperature of $60^{\circ}$. Also there was optimal area ratio of regeneration to dehumidification between 0.7 and 1.0. Our results showed that it had a small effect on the system’s cooling capacity to install direct evaporative cooler at the inlet of regeneration process.

증발냉각에 의한 공랭 응축기의 성능향상 가능성에 관한 연구 (Cooling Enhancement Potential of an Air-Cooled Condenser by Evaporative Cooling)

  • 이대영;백영진;김영일
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.203-210
    • /
    • 2004
  • This paper describes the potential advantages in applying evaporative cooling to air-cooled condensers. The cooling characteristics of an air-cooled condenser with its surface fully covered with thin water film are investigated and compared with that of an air-cooled condenser with usual dry surface. By applying the evaporative cooling, the cooling performance of the condenser is shown to improve enormously. When the outdoor air is 35$^{\circ}C$ and 40% in relative humidity, the condensing temperature of the refrigerant is decreased by 2$0^{\circ}C$. Even when the incoming air is fully saturated with water vapor, the evaporation from the wet surface occurs to cause a decrease in the condensing temperature by 1$0^{\circ}C$. The main reason for this improvement is assessed as the addition of an efficient cooling mechanism which is the water evaporation resulting in latent heat absorption.

재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석 (Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler)

  • 장영수;이대영
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.