• 제목/요약/키워드: Evaporation velocity

검색결과 111건 처리시간 0.028초

Effects of environmental flow velocity on the evaporation of free droplets (자유액적의 증발에 미치는 분위기 속도의 영향)

  • Jeong, Seong-Sik;Ha, Jong-Ryul;Lee, Jung-Sun;Lee, Sang-Seok;Kawaguchi, O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권6호
    • /
    • pp.2036-2045
    • /
    • 1996
  • An experimental study has been performed to obtain the effect of relative velocity between droplet and environmental gas on the evaporation of a n-heptane free droplet of 180 $\mu$m in diameter flying in a hot and normal pressure air flow. Measurement of droplet diameter and velocity was conducted in a series of time by an electrically controlled optical system. From the experimental results, an empirical equation associated with the relation between evaporation rate constant and relative velocity was obtained.

Experimental Study of the Evaporation of Spreading Liquid Nitrogen (확산하는 액체질소의 증발에 관한 실험적 연구)

  • KIM, MYUNGBAE;CHOI, BYUNGIL;KIM, TAE-HOON;DO, KYHYUNG;HAN, YONGSHIK;CHUNG, KYUNGYUL
    • Journal of Hydrogen and New Energy
    • /
    • 제29권5호
    • /
    • pp.466-472
    • /
    • 2018
  • The investigation of cryogenic liquid pool spreading is an essential procedure to assess the hazard of cryogenic liquid usage. In this experimental study, to measure the evaporation velocity when the pool is spreading, liquid nitrogen was continuously released onto unconfined concrete ground. Almost all of the reported results are based on a non-spreading pool in which cryogenic liquid is instantaneously poured onto bounded ground for a very short period of time. A simultaneous measurement of the pool location using thermocouples and of the pool mass using a digital balance was carried out to measure the evaporation velocity and the pool radius. A greater release flow rate was found to result in a greater average evaporation velocity, and the evaporation velocity decreased with the spreading time and the pool radius.

A Study on the Evaporation of Radioactive Liquid Waste (방사성(放射性) 폐액(廢液)의 자연증발(自然蒸發)에 관한 연구(硏究))

  • Kang, I.S.;Kim, T.K.;Yoo, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제5권1호
    • /
    • pp.18-26
    • /
    • 1993
  • The performance of the evaporation facility of low radioactive liquid waste is studied experimentally. The evaporation facility comprises storage pools, feeding pumps, evaporation units with 1,040 sheets of cloth and air handling units. As the results of this study, it is found that the evaporation rate increases as the waste feed rate increases, the relative humidity of induced air decreases, and the air velocity increases. The modified Dalton's evaporation equation derived from experimental data is $E_h=(0.0168+0.0141V){\Delta}H$. The optimum operating conditions of the evaporation facility are waste feed rate of $4.5./hr.m^2$ and air velocity of 1.47m/sec.

  • PDF

A Study on the Evaporation and Distribution Velocity a Volatile Mixtures (가연성 혼합액체의 증발 및 분포 속도에 관한 연구)

  • An, Hyung-Whan
    • Journal of the Korean Institute of Gas
    • /
    • 제18권6호
    • /
    • pp.1-6
    • /
    • 2014
  • This study is based on a investigation regarding the evaporation rate of a volatile liquid(methanol, tetrahydrofuran, xylene) according to changes of the temperature and wind. The weight of a volatile liquid was standardized to 24 g and the mixture was formed with the same weight ratio. In order to discover about the effect of the wind velocity, small fan was installed at 10 cm above the entrance and 30 cm away in the direction of the cylinder. The effect of the wind velocity was tested at 0 m/s, 1.63 m/s, 2.03 m/s respectively and the effect of the temperature on the volatile liquid was experimented at the temperature of $21^{\circ}C$, $32^{\circ}C$, $52^{\circ}C$ in the constant temperature water base. As a result, in case of Xylene, the evaporation rate of the tetrahydrofuran and methanol showed 1.4 mg/min, 19.8 mg/min and 10.2 mg/min respectively. Also, the effect of the evaporation rate on the temperature of the volatile liquid and on the velocity of wind was shown to be very sensitive. At the same time, the evaporation rate of the mixture showed large difference compared to that of the single volatile liquid.

A Statistical Approach to Examine the Impact of Various Meteorological Parameters on Pan Evaporation

  • Pandey, Swati;Kumar, Manoj;Chakraborty, Soubhik;Mahanti, N.C.
    • The Korean Journal of Applied Statistics
    • /
    • 제22권3호
    • /
    • pp.515-530
    • /
    • 2009
  • Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

An Experimental Study on Evaporation and Ignition of the Single Droplet on Hot Surface (단일액적어류의 증발 , 착화에 관한 실험적 연구 - 가열 표면상에 적하할 경우 -)

  • Jang, Jae-Eun;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제28권4호
    • /
    • pp.418-429
    • /
    • 1992
  • Recently, many researchers make a great effort to develop high efficient marine diesel engines using low grade heavy oil, and also study substitution fuel oil for engines and boilers. In case of Fisheries Vessels, we need to know that fish oil can be substituted for fuel oil. Therefore, it is studied that evaporation, ignition and combustion phenomena of the single droplet of fish oils (i.e., Sardine fish oil, File fish oil and Alaska pollac oil) on heated plane surface to evaluate appropriateness as substitution oil. Methanol and light oil are tested simultaneously to help the evaluation on these Fish oils. The results are summarized as follows: 1. The type of evaporation and combustion is spherical evaporation in case of methanol and light oil. And fish oil blended with light oil was finished after spherical evaporation happen when high temperature. 2. Ignition of Pure fish oil was shorter than that of fish oil blended with light oil. 3. Heat transferred to droplet could make qualitative comparison by contact diameter of droplet with hot surface as time changes. Life time of droplet according to the change of heated surface temperature was greatly influenced by droplet contact condition on the heated surface. 4. As far as combustion phenomena was concerned, apparent diameter of the fish oil droplet increased after ignition and decreased suddenly by internal boiling of droplet. 5. Three fish oils had similar phenomena on the evaporation, ignition and combustion. 6. Evaporation and combustion feature of fish oil could not be shown by coefficient of evaporation velocity of droplet and coefficient of combustion velocity of droplet.

  • PDF

A Numerical Study on Evaporation of Sludge Particles in a Sludge Dryer (열건조기내에서 슬러지 입자의 증발현상에 관한 수치해석 연구)

  • Ku, Bon-Ki;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제22권8호
    • /
    • pp.1064-1072
    • /
    • 1998
  • The evaporation of sludge particles in a sludge dryer has been numerically investigated with commercial CFX4.1 code. Gas flow field, gas temperature field, sludge particle trajectories, and the moisture content variation of sludge particles are calculated fort various influencing factors, i. e., gas swirl velocity, initial particle distribution, gas temperature. Evaporation of sludge particles increases with gas swirl velocity, several supplying positions, and gas temperature, respectively due to increased residence time, increased contacting surface area, and increased temperature difference between gas and particle.

A Numerical Study on the Break-up of the Fuel Spray in Diesel Engine (디젤기관 연료분무의 분열 현상에 대한 수치해석적 연구)

  • Yang, H.C.;Choi, Y.K.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제3권6호
    • /
    • pp.8-22
    • /
    • 1995
  • Three dimensional numerical study of non-evaporating and evaporating spray characteristics was performed in a quiescent and motoring condition of direct injection diesel engine. The calculation parameter was breakup model. The breakup models used were Reitz & Diwakar model and TAB model. The modified k-${\varepsilon}$ turbulence model considering the compressibility effect due to the compression and expansion of piston was used. The calculation results of the spray tip penetration and tip velocity using the TAB model showed similar trends comparing with the experimental data. Although the evaporation rate was not nearly affected with the breakup model at the higher injection pressure, in the low injection case, the evaporation rate result using the TAB model became higher than that of R&D model. The evaporation rate was increased with the injection pressure due to the vigorous interaction with the gas field.

  • PDF

Effects of Water Vapor Concentration on a Droplet Evaporation (액적의 증발에 미치는 수증기 농도의 영향)

  • Kim, Y.W.;Lee, M.J.;Ha, J.Y.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1999
  • An experimental study has been conducted to clarify the effect of vapor on droplet evaporation. Droplets of water, ethanol, n-hexadecane and n-heptane were exposed in air stream. Temperature, pressure, and flow velocity in the ambient air are 470K, 1 atm, and 2m/s, respectively. Measurements are carried out for the wide range of water vapor concentration$(0%\sim40%)$. To obtain the time histories of droplet diameter, suspended droplet in hot and humid air stream was synchronized with a back flash light, and enlarged droplet images were taken on a CCD camera. With the vapor concentration increasing, the evaporation rate constant of water droplet decrease slightly and the droplet of ethanol and n-heptane increase actively. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF