• Title/Summary/Keyword: Evaporation spray

Search Result 199, Processing Time 0.022 seconds

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.

Calculation of the flow field in the cylinder of the diesel engine for different bowl shapes and swirl ratios (보올형상과 선회비에 따른 디젤기관 실린더내의 유동장 해석)

  • 최영진;양희천;유홍선;최영기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.50-66
    • /
    • 1991
  • There are many factors which influence on the performance of a diesel engine. The piston bowl shape and swirl ratio are important factors to enhance the fuel-air mixing and flame propagation. In this study, calculations of the flow field in the cylinder of the diesel engine were carried out using the CONCHAS-SPRAY code for different bowl shapes and swirl ratios. In the case of constant swirl ratio, vortices which affect fuel-air mixing, evaporation and flame propagation are generated more strongly and consistently in the bowl-piston type combustion chamber than in the flat piston type. With this strong squish effect, injected fuel droplets are widely diffused and rapidly evaporated in the bowl-piston type combustion chamber. Especially a strong squish is developed and large and strong vortices are generated in the edge cutted bowl piston chamber. As the swirl ratio increases, it is found that a large and strong squish and vortices are generated in the combustion chamber and also fuel droplets are diffused into the entire combustion chamber.

  • PDF

Studies on the Synthesis of High Purity and Fine Mullite Powder (I) (고순도 초미립자 물라이트 분말 합성에 대한 연구 (I))

  • 김경용;김윤호;김병호;이동주
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

A Study on the Properties of the Zn-Cr Alloy Films by Evaporation (진공증착법으로 제조된 Zn-Cr박막의 특성에 관한 연구)

  • Ju, Bong-Hwan;Lee, Gyu-Hwan;Gwon, Sik-Cheol;Baek, Un-Seung
    • 연구논문집
    • /
    • s.23
    • /
    • pp.109-120
    • /
    • 1993
  • A study on corrosion and adhesion properties of evaporated Zn-Cr films were conducted on steel strip by two-source evaporater. Corrosion resistance of Zn-Cr coated steel was evaluated by salt spray test in 5% NaCl. Adhesion property of Zn-Cr films on steel substrate was evaluated by tape test after $180^\circC$ bending. Adhesion was improved with increasing the Cr content and reached the maximum at the Cr content of 6 to 8wt%. Corrosion resistance was enhanced with increasing the Cr content and improved by rolling Zn-Cr coated specimen, as a post-treatment.

  • PDF

A study on the Optical Properties of OLED Anode by Chemical Mechanical Polishing (양호한 유기발광소자의 광학적 특성 개선을 위한 Anode 표면특성에 관한 연구)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Ko, Pil-Ju;Park, Ju-Sun;Na, Han-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.7-9
    • /
    • 2008
  • ITO thin film is generally fabricated by various. methods such as spray, CVD, evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive DC sputtering. However, some problems such as peaks, bumps, large particles, and pin-holes on the surface of ITO thin film were reported, which caused the destruction of color quality, the reduction of device life time, and short-circuit. Chemical mechanical polishing (CMP) process is one of the suitable solutions which could solve the problems

  • PDF

Review on the Gas Turbine Combustor Sizing Methodologies using Fuel Atomization and Evaporation Characteristics (연료의 미립화 및 증발 특성 데이터를 이용한 가스터빈 연소기 사이징 기법 고찰)

  • Kim, D.;Jin, Y.I.;Hwang, K.Y.;Min, S.K.
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.101-108
    • /
    • 2014
  • The current paper reviews the main characteristics and the operating principles of major fuel atomizers used for gas turbine combustors, including various empirical SMD equations for each atomizers. We have summarized various methodologies for evaluation of the combustion efficiency and for combustor sizing from the selected SMD data. It is found that the combustor sizing as well as the combustion efficiency are totally dependent upon the SMD calculation results, which means that special cares should be taken in choosing the SMD empirical equations.

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

A Study on the Engine Performance and Emission of Gasoline-Methanol Blend in Vehicle Engine (자동차 엔진의 혼합연료가 엔진 성능과 배기가스에 미치는 영향에 관한 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.24-31
    • /
    • 1999
  • The engine performance and combustion characteristics of methanol blended fuel of spark ignition engine were discussed on the basics of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending fuel on combustion in cylinder were investigated tinder various conditions of engine cycle and blending ratios. The results showed thai the engine performance was influenced by the methanol blending ratio and the variations of operating conditions test engine. The increase of fuel temperature brought on the improvement of combustion characteristics such as cylinder pressure. the rate of pressure rise and heat release in an engine. The burning rate of fuel-air mixture, the exhaust emissions and the other characteristics of performance were discussed also.

  • PDF