• 제목/요약/키워드: Evaporation cooling

검색결과 176건 처리시간 0.039초

증발분출냉각의 열전달 특성에 관한 실험적 연구 (Experimental study on the heat transfer characteristics of evaporative transpiration cooling)

  • 이진호;남궁규완;김홍제;주성백
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1130-1137
    • /
    • 1988
  • 본 연구에서는 증발분출냉각장치의 설계 및 이의 응용을 위하여 두께가 비교 적 두꺼운(120mm) 다공물질층을 모델로 사용하여 증발분출냉각에 관한 열전달특성을 실험적으로 조사하였다. 실험은 열과 유체의 흐름이 1차원 정상상태에 대하여 증발 영역의 발생과 그 길이 및 상변화위치, 그리고 다공물질층의 표면온도등에 영향을 미 치는 인자들을 조사하며, 아울러 냉각수의 상변화시 다공층내 냉각수 유동의 안정성 여부를 관찰하였다.

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • 국제초고층학회논문집
    • /
    • 제12권4호
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.

물과 나노유체 액적의 고온 벽면에서의 증발 특성에 관한 연구 (A Study on the Evaporation Characteristics of Water or Nanofluid Droplets on a Heated Surface)

  • 김진한;이경재;정선욱;강보선
    • 한국분무공학회지
    • /
    • 제21권4호
    • /
    • pp.177-183
    • /
    • 2016
  • In this study, the evaporation characteristics of water or nanofluid droplets on a heated surface was investigated by visualization of the evaporation process and evaluation of the heat transfer coefficient using the droplet temperature measured. The evaporation characteristics was compared between water and nanofluid droplets and the effects of the mass ratio of nanofluid and the inclination of heated surface were analyzed. The heat transfer rate of nanofluid droplet was higher than that of water droplet. The heat transfer coefficient was increased with the increase of the mass ratio of nanofluid. The effect of the inclination of heated surface was much higher than that of fluid type used, which indicates that the inclination of heated surface should be considered as one of influential parameters in the spray cooling process.

고압에서의 액적의 증발현상에 관한 연구 (Investigation of Droplet Vaporizatio Phenomena in High Pressure Environments)

  • 이현창;백승욱
    • 한국연소학회지
    • /
    • 제13권3호
    • /
    • pp.17-23
    • /
    • 2008
  • The spray combustion and spray cooling depends on droplet evaporation. So, evaporation model for spray has been requested and lots of investigation has been done and various reliable models have been developed also for last few decades. In the present study, One dimensional quasi-steady spherically symmetric droplet evaporation model for micro-gravity is developed. The gas phase was assumed as steady state and the thermophysical properties are calculated as a function of temperature, pressure and composition and the properties used in the model was validated by NIST web data and overall evaporation history results was compared with experimental results by Nomura and Qasim and gave satisfactory agreements. Through this model, diverse phenomenon was investigated, especially regarding the effects of ambient pressure and temperature. The effects of pressure for the droplet evaporation time were studied. The high pressure increased the droplet surface temperature and made effect on the evaporation time depend on atmospheric temperature. The role of the ambient temperature was investigated and explained. The basic investigation for the evaporation process according to variation of droplet diameter and surface temperature were also investigated and the well-known phenomena, like D-square-law, were reported, too.

  • PDF

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

온실의 냉방부하 및 포그시스템의 증발효율 실험분석 (Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses)

  • 남상운;서동욱;신현호
    • 생물환경조절학회지
    • /
    • 제24권3호
    • /
    • pp.147-152
    • /
    • 2015
  • 온실의 냉방부하 산정방법 개발을 위하여 열수지 방법에 기초한 냉방부하 산정식을 구성하고, 포그냉방 온실에서 냉방부하를 실측하여 검증하였다. 포그냉방 온실의 냉각열량은 포그분사에 의한 증발수량에 물의 증발잠열을 곱하여 구할 수 있다. 여기서, 증발수량은 포그 분사량에 증발효율을 곱하면 구할 수 있으며, 즉 분무수량을 계측하고 포그시스템의 증발효율을 알면 온실의 냉방부하를 실측할 수 있다. 따라서 온실의 냉방부하 실측을 위하여 실험온실에서 포그시스템의 증발효율을 실험하고, 실험온실의 열환경 계측과 더불어 포그 분사량을 계측하여 냉방부하 산정방법을 검토하였다. 먼저 냉방부하 산정식의 환기전열량을 검토하기 위하여 냉방을 실시하지 않은 상태에서 환기량 실측 실험을 통해 비교한 결과 열수지식을 이용한 환기전열량 예측은 비교적 양호한 결과를 보이는 것으로 나타났다. 이류체 포그시스템의 증발효율은 0.3~0.94의 범위를 보였으며 평균 0.67로 나타났고, 환기율이 증가함에 따라 커지는 것으로 나타났다. 포그냉방을 실시하면서 온실의 환경을 계측하여 열수지식으로 냉방부하를 계산하고, 분무량 실측치로부터 증발 냉각열량을 구하여 비교한 결과 냉방부하 계산치와 실측치는 대체로 유사한 경향을 보이는 것으로 나타났다. 냉방부하가 낮은 경우에는 실측치에 비하여 약간 크게 예측되었고, 냉방부하가 높은 경우에는 실측치보다 작게 예측되었다. 온실의 냉방시스템 설계 시에는 최대냉방부하를 이용하여 냉방설비의 용량을 결정하게 된다. 따라서 냉방부하가 큰 쪽에서 실측치보다 작게 예측되는 부분은 검토가 필요하지만 설비용량 산정시의 안전계수를 고려하면 본 연구에서 제시한 냉방부하 산정방법은 온실의 환경설계에 적용할 수 있는 것으로 판단된다.

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구 (The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space)

  • 이진호;방창훈;김정수
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

고온 실린더의 미스트 냉각 (Mist Cooling of High-Temperature Cylinder Surface)

  • 김무환;이수관;박지만;이필종
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

관측에 의한 옥상 수공간의 자연냉각효과 평가 (Evaluation of Passive Cooling Effect on Roof Pond through Field Observation)

  • 정성진;최동호;이부용
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.85-89
    • /
    • 2008
  • This study carried out field observations of measuring thermal environment, especially evaluating amount of water evaporation at roof Pond by field observations during the summer. Thermal environment measuring was categorized as air temperature, water temperature of roof pond, surface temperature, globe temperature, short and long wave radiation, net radiation, and amount of water evaporation by water level measurement. Results from this study could be used as fundamental for reducing heat Island phenomena.

  • PDF